Facultad Regional Santa Fe

Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/113

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Non-smooth numerical solution for Coulomb friction and sliding, rolling and spinning resistance applied to flexible multibody system dynamics
    (Multibody System Dynamics, 2023-06) Sánchez, Eliana; Cosimo, Alejandro; Brüls, Olivier; Cardona, Alberto; Cavalieri, Federico J.
    This paper presents the general motion of a sphere in contact with a rigid planar rigid surface under rolling, sliding and spinning friction in the context of non-smooth contact dynamics. The equation of motion are solved by the non smooth generalized α implicit time integration scheme where the constrains at position and at velocity level are satisfied exactly without requiring to define any penalty parameter. The geometrical properties of the spheres are described by a rigid body formulation with translational and rotational degrees of freedom. The robustness and the performance of the proposed methodology is demonstrated by different examples including both flexible and/or rigid elements.
  • Thumbnail Image
    Item
    Simulation of spherical rigid bodies subject to friction with multiple impacts
    (11th ECCOMAS, 2023-07) Sánchez, Eliana; Cardona, Alberto; Cosimo, Alejandro; Brüls, Olivier; Cavalieri, Federico J.
    This work introduces a novel methodology for simulating multiple impacts between spherical rigid bodies under frictional contact, within the framework of nonsmooth contact dynamics and the finite element method for large rotations. The approach extends a previously developed frictionless impact algorithm based on Newton’s impact law (Cosimo et al., 2020) to incorporate sliding, rolling, and drilling friction effects. The core contribution lies in the sequential resolution of impact problems over vanishing time intervals, redefining the active contact set in both normal and tangential directions. Closed contacts with zero pre-impact velocity are considered inactive, enhancing numerical robustness.The method employs advanced sphere-plane and sphere-sphere contact elements (Cavalieri et al., 2021), and solves the contact problem using an augmented Lagrangian formulation. The equations of motion are integrated with the nonsmooth generalized-α time integration scheme, ensuring stable and accurate results. A billiard break scenario is used as a numerical benchmark to validate the method’s ability to handle simultaneous impacts with and without friction. Two cases are considered: one without rolling resistance and another including a rolling resistance radius of ρ = 0.005 m. Results demonstrate that the proposed method avoids interpenetration, unlike penalty-based formulations, and significantly reduces computational time from 25,000 s to 40 s. This strategy is efficient, fully automatic, and avoids the need for manual sequencing or topological analysis of impact events, making it a promising tool for complex multibody dynamics simulations.
  • Thumbnail Image
    Item
    Simulación de un rodamiento de bolas en un mecanismo considerando efectos de impacto y fricción
    (XXXIX MECOM, 2023-11) Sánchez, Eliana; Cardona, Alberto; Cavalieri, Federico J.
    Este trabajo estudia los impactos que se producen en un rodamiento de bolas, el cual forma parte de un mecanismo. Debido al movimiento del sistema y a la existencia de huelgos entre componentes, se generan tensiones y deformaciones que varían en el tiempo. Las tensiones y deformaciones se calculan mediante la detección de los saltos de velocidad inducidos por los impactos entre las bolas y las pistas en el marco de la dinámica de impacto no suave. Con el fin de resolver las ecuaciones de movimiento, se utiliza el esquema de integración temporal α–generalizado no suave. Además, para regularizar el problema de contacto, se emplea una formulación dual mixta basada en un método tipo Lagrangiano aumentado. Con el objetivo de demostrar la eficiencia y la robustez de la metodología propuesta, se presenta un ejemplo numérico de un mecanismo biela manivela con un rodamiento en uno de sus extremos. Los resultados numéricos obtenidos evidencian que la metodología es efectiva y adecuada para ser empleada en otras aplicaciones prácticas, como cajas de engranajes, turbinas eólicas y motores, entre otras.