Desarrollo, Producción e Innovación en la Investigación científica
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/2392
Browse
3 results
Search Results
Item H2 storage using Zr-CMK-3 developed by a new synthesis method.(Univesidsad Tecnológica Nacional, 2021) Juárez , Juliana María; Venosta , Lisandro; Anunziata, Oscar Alfredo; Gómez Costa , Marcos Bruno; Anunziata, Oscar AlfredoOne of the biggest problems in using hydrogen as an alternative fuel is that its storage must be safe and portable. This work addresses a new direct synthesis technique used to obtain a novel mesoporous carbon (CMK-3) modified with zirconium oxide. This novel material shows promise for hydrogen adsorption and storage application for energy harvesting. Zirconium oxide (Zr-CMK-3) material is achieved through successful synthesis and characterized by XRD, SEM,Raman, BET, UV-Vis-DRS, XPS and TEM analyses. Zr-CMK-3 signifi- cantly improved H2 storage performance (reaching at 77 K and 10 bar 4.6 wt%) comparedto the pristine CMK-3. The novel material is favorable for H2 uptake by using weak bonding (physisorption). A hydrogen uptake mechanistic approach is proposed and the role of the Zr+4 cation in hydrogen adsorption is discussed.Item H2 storage using Zr-CMK-3 developed by a new synthesis method(2021) Juárez, Juliana María; Venosta, Lisandro F.; Anunziata, Oscar Alfredo; Gómez Costa, Marcos BrunoOne of the biggest problems in using hydrogen as an alternative fuel is that its storage must be safe and portable. This work addresses a new direct synthesis technique used to obtain a novel mesoporous carbon (CMK-3) modified with zirconium oxide. This novel material shows promise for hydrogen adsorption and storage application for energy harvesting. Zirconium oxide (Zr-CMK-3) material is achieved through successful synthesis and characterized by XRD, SEM, Raman, BET, UV-Vis-DRS, XPS and TEM analyses. Zr-CMK-3 signifi- cantly improved H2 storage performance (reaching at 77 K and 10 bar 4.6 wt%) compared to the pristine CMK-3. The novel material is favorable for H2 uptake by using weak bonding (physisorption). A hydrogen uptake mechanistic approach is proposed and the role of the Zr+4 cation in hydrogen adsorption is discussed.Item Synthesis and characteristics of CMK-3 modified with magnetite nanoparticles for application in hydrogen storage(2022) Juárez, Juliana María; Cussa, Jogelina; Anunziata, Oscar Alfredo; Gómez Costa, Marcos BrunoIn this work, we report the synthesis and characterization of iron oxide nanoparticles supported in nanostructured carbon (CMK-3). This material is promising in the application of hydrogen adsorption for energy storage. The material with iron oxide nano- particles (Fe-CMK-3) was successfully synthesized and characterized by X-ray diffraction, textural properties analysis, transmission and scanning electron microsco- py, X-ray photoelectron spectroscopy, and magnetiza- tion studies. A large amount of the iron incorporated as iron oxide nanoparticles was in the magnetite phase. The incorporation of magnetite on the CMK-3 carbon surface significantly improved the storage capacity of hydrogen (4.45 wt% at 77 K and 10 bar) compared with the CMK-3 framework alone (2.20 wt% at 77 K and 10 bar). The synthesized material is promising for hy- drogen adsorption by weak bond forces (physisorption). A hydrogen adsorption mechanism was proposed in which the nanoparticles of magnetite have an important role.