Desarrollo, Producción e Innovación en la Investigación científica

Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/2392

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    ODS of dibenzothiopene with titanium-modified SBA-16.
    (Universidad Tecnológica Nacional., 2015) Rivoira , Lorena Paola; Vallés , Verónica Alejandra; Beltramone , Andrea Raquel; Martínez , María Laura; Ledesma , Brenda Cecilia; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; Ledesma , Brenda Cecilia; Martínez , María Laura; Vallés , Verónica Alejandra
    Over the past, oxidative desulfurization (ODS) has drawn considerable interest as a new alter native method for deep sulfur elimination from light oils. This can be attributed to its attrac tive properties, including lower temperature and pressure conditions and lower operating cost [1-3] than conventional hydrodesulfurization (HDS) process. Oxidation of organosulfur com pounds results in the formation of sulfoxides/sulfones, highly polar and hence easily removed by both extraction into polar solvents or by adsorption. Due to their low reactivity, diben zothiophene derivatives (DBTs) are the most refractory species to be eliminated from oils. Hence, the ODS process through which DBTs are converted to their corresponding sulfones involves great interest at present [4-6]. We recently reported a good performance of this sup port in hydrotreating processes [7]. In this work, we describe the preparation and characteriza tion of new mesoporous catalytic materials based on Ti-containing SBA-16. We study here, the effect of the preparation method of titania-modified SBA-16 (characteristics of the active Ti and/or TiO2 species) and the effect of the different operation conditions in ODS of DBT under mild conditions in order to find the best performance. TiO2-modified mesoporous SBA 16 and titanium-substituted mesoporous SBA-16 were developed and tested in the oxidative desulfurization (ODS) of dibenzothiophene prevailing in liquid fuel. We assessed the impact exerted on performance of different reaction variables, including (nature and amount of the active catalytic species, phase system, molar ratio of oxidant H2O2 and DBT, reaction tempe rature, nature of the substrate and reuse of catalysts).
  • Thumbnail Image
    Item
    Sulfur elimination by oxidative desulfurization with titanium-modified SBA-16.
    (Univesidsad Tecnológica Nacional., 2015) Rivoira , Lorena Paola; Vallés , Verónica Alejandra; Ledesma , Brenda Cecilia; Ponte , María Virginia; Martínez , María Laura; Anunziata , Oscar Alfredo; Beltramone, Andrea Raquel; Anunziata , Oscar Alfredo; Martínez , María Laura; Ponte , María Virginia; Ledesma , Brenda Cecilia; Vallés , Verónica Alejandra
    TiO2-modified mesoporous SBA-16 and titanium-substituted mesoporous SBA-16 were developed and tested in the oxidative desulfurization (ODS) of dibenzothiophene prevailing in liquid fuel. Pure TiO2 was used as reference. The titania-based catalysts were characterized by chemical analysis, XRD, EDX and TEM. The titanium state as tetrahedral (in Ti-SBA-16 sample) or octahedral (in TiO2/SBA-16 sample) coordination surrounding in the silicate matrix was determined by XPS, UV–vis DRS, FTIR, Raman and XANES. We assessed the impact exerted on performance of different reaction variables, including (nature and amount of the active catalytic species, phase system, molar ratio of oxidant H2O2 and DBT, reaction temperature, nature of the substrate and reuse of catalysts). In addition, we carried out a kinetic study and the activation energy was determined. We achieved 90% of S removal from a 0.2 wt.% dibenzothiophene solution at 60 ◦C in less than 1 h of reaction. The best catalytic results are obtained with high exposed surface of nanometric TiO2 species of TiO2/SBA-16 sample. The activated catalyst is very active in ODS reaction and can be reused four times with no loss in activity.