Desarrollo, Producción e Innovación en la Investigación científica
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/2392
Browse
2 results
Search Results
Item An Artificial Intelligence Approach to Modeling in Social Science.(Journal of Health and Environmental Research., 2021) Vázquez , Juan Carlos; Castillo, Julio; Constable, Leticia; Cárdenas, Marina; Vázquez, Juan Carlos GuillermoComputer Science has contributed to social sciences since decades ago: connecting people that build virtual communities where the interactions can be investigated, developing tools for statistically analytics, designing models that allow the analysis and simulation of the most diverse types, among many others. In this article, we describe an artificial neural network to model a theoretical framework for risk, housing, and health problematic, called DRVS (Diagnostic methodology for risk determination of urban housing for health), which uses a holistic approach for community and environmental health. The methodology also exposes digital clinic history for families and communities, developed to support the acquisition of necessary data. This software has advantages for the transference and application of the DRVS in different locations since it constitutes an expert system for the determination of local social indexes and supports the quantitative validation process for the underlying social theory. On the other hand, as many artificial intelligence techniques, it has constraints: unlike explicit logic inferences, artificial neural networks work as «black boxes», not explaining how they got the result; they have a strong dependency of the representativeness of training data and introducing new knowledge that may improve their results and performance is difficult (new data, addition or remotion of determining factors for the underlying social model, weighting factors, etc.). This article also shows some techniques and ideas on how to deal with the identified constraints.Item Comparison of neural networks. an estimation model in yield of monoglycerides from biodiesel by-product(2019-07-17) Álvarez, Dolores María Eugenia; Bálsamo, Nancy Florentina; Modesti, Mario Roberto; Crivello, Mónica ElsieBiodiesel is generally manufactured by transesterification, obtaining glycerol as a by-product. The transesterification of methyl stearate selectively produced monoglycerides, for glycerol valuation. Mixed oxides containing lithium catalysed the reaction. The purpose of this work was to develop and compare mathematical models obtained through artificial neural networks (ANN), capable for characterising the relationship between the mole percent conversion of methyl stearate and the yield of the products mono-, di- and triglycerides. The lowest mean squared error (MSE), the highest correlation coefficient (R), similarity in the evolution of validation and simulation errors and absence of data overlearning were considered to select the best model. Three ANNs with backpropagation structures were compared. They evidenced high correspondence between the estimated product yield values and the interpolated experimental ones. The ANN containing 35 neurons with sigmoid transfer function in the hidden layer and a linear neuron in the output one was the simplest. Consequently, the 5, 15 and 60 neurons were also explored in the hidden layer. The ANN structured with an intermediate number of neurons (35) achieved the most adequate MSE, considering mono- and diglyceride products (0.011193, 0.000489). The development of these models contributes to the dynamic estimation of the process.