UTN- FRC -Producción Académica de Investigación y Desarrollo
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/1932
Browse
7 results
Search Results
Item Synthesis and characteristics of magnetite containing-cmk-3 and its application in hydrogen storage(2020) Juárez, Juliana M.; Venosta, Lisandro F.; Gómez Costa, Marcos B.; Anunziata, Oscar A.In this work, we report the synthesis and characterization of iron oxide nanoparticles (Magnetite) supported on CMK-3. The materials were characterized by XRD, SEM, TEM, XPS and magnetization studies. A large amount of the iron incorporated as iron oxide nanoparticles was in the magnetite phase. The incorporation of magnetite on the CMK-3 carbon surface significantly improved the hydrogen storage capacity (4.45 wt. % at 77 K and 10 bar) compared to the CMK-3 structure (2.20 wt% at 77 K and 10 bar). Magnetite nanoparticles play a key role in H2 adsorption.Item Direct synthesis and characterization of mesoporous carbon CMK-3 modified with zirconia applied in energy storage(2020) Venosta, Lisandro F.; Gómez Costa, Marcos B.; Juárez, Juliana M.; Anunziata, Oscar A.In this work, we report the synthesis and characterization of the nanostructured carbon material (CMK- 3) modified with zirconium oxide synthesized by a new direct synthesis technique. The aim of this new synthesis method is to avoid the use of inorganic siliceous template (SBA-15), which leads to a shorter and cheaper way to obtain mesoporous carbon, and at the same time incorporate into the framework Zirconium atoms. Zirconium oxide dispersed in carbon materials (Zr-CMK-3) were successfully synthesized and characterized by X-ray diffraction, textural properties, UV-Vis-DRS, XPS, and transmission electron microscopy analysis. This material is promising in the application of hydrogen adsorption for energy storage. Zr-CMK-3 material significantly improved H2 storage behavior (4.6% by weight at 77 K and 10 bar) compared to CMK-3 support. The synthesized material is promising in the absorption of hydrogen by weak bonding forces (physisorption). A hydrogen adsorption mechanism was proposed and the role of the Zr+4 cation in hydrogen absorption was discussed. The activity of the samples to the adsorption of hydrogen molecules is attributed to the improved dispersion of the zirconium oxide, as well as the appropriate use of support, which can probably disperse the zirconium on its large surface area, allowing a great dispersion of the zirconium. The Zr+4 cation is an active species to absorb and store hydrogen through a physisorption process and the carbon plays an important role in the dispersion and size of metal particles. A hydrogen storage mechanism on the active surface of the ZrO2 clusters was proposed. First layer of hydrogen molecules can react with the metal cation through a dihydrogen complex (Kubas interaction) [1]. The second layer of hydrogen molecules adsorbed around the metal oxide clusters is due to dipole-like interactions, this is because the metal particle induces dipole forces on the hydrogen molecule. The other layers could also interact by dipole forces; however, the interaction force decreases as the distance to the surface increases. The interaction of the induced dipole in a second layer adsorbs more hydrogen molecules because the strong interaction of the metal particles takes up dipole-induced forces on the hydrogen molecules. The upper layers could interact with the metal cation by dipole-induced bonding; however, the interaction force decreases as the distance to the surface increases. The procedure for this adsorption is still under investigation and optimization. The hydrogen storage behavior in Zr-CMK-3 can be optimized by controlling the size of the metal particles, the dispersion and the nature of the support.Item Síntesis directa del carbón mesoporoso ordenado cmk-3 modificado con circonio aplicado en almacenamiento de energía(2020) Gómez Costa, Marcos B.; Juárez, Juliana M.; Anunziata, Oscar A.; Venosta, Lisandro F.En este trabajo, informamos la síntesis y caracterización del material de carbono nanoestructurado (CMK-3) modificado con óxido de circonio sintetizado por una nueva técnica de síntesis directa. Este material es prometedor en la aplicación de adsorción de hidrógeno para el almacenamiento de energía. Los materiales con óxido de circonio (Zr-CMK-3) se sintetizaron con éxito y se caracterizaron por difracción de rayos X, propiedades texturales, UV-Vis-DRS, XPS y análisis de microscopía electrónica de transmisión. El material Zr-CMK-3 mejoró significativamente el comportamiento de almacenamiento de H2 (4,6% en peso a 77 K y 10 bar) en comparación con el soporte CMK-3. El material sintetizado es prometedor en la absorción de hidrógeno por fuerzas de enlace débiles (fisisorción). Se propuso un mecanismo de adsorción de hidrógeno y se discutió el rol de catión Zr+4 en la absorción de hidrógeno.Item Hydrogen storage on a novel nanostructured carbón material modified with zirconia(2021) Juárez, Juliana M.; Gómez Costa, Marcos B.; Anunziata, Oscar A.; Venosta, Lisandro F.In this work, we report the synthesis and characterization of zirconium oxide supported in nanostructured carbon material synthesized by a new direct synthesis technique. The goal of this new method is to avoid the use of inorganic siliceous template (SBA-15), which leads to a shorter and cheaper way to obtain mesoporous carbon, and at the same time incorporate into the framework Zirconium atoms. The material with zirconium oxide (Zr-CMK-3) was successfully synthesized and characterized by Xray diffraction, SEM, RAMAN and textural properties, UV-Vis-DRS, X-ray photoelectron spectroscopy and transmission electron microscopy analyses. Zr-CMK-3 improved significantly the H2 storage behavior (4.6 wt% at 77 K and 10 bar) compared with CMK-3. The synthesized material is promising for hydrogen uptake by means of weak bonding (physisorption). The activity of the samples to the adsorption of hydrogen molecules is attributed to the improved dispersion of the zirconium oxide, as well as the appropriate use of support, which can probably disperse the zirconium on its large surface area, allowing a great dispersion of the zirconium. The Zr+4 cation is an active species to absorb and store hydrogen through a physisorption process and the carbon plays an important role in the dispersion and size of metal particles. A hydrogen storage mechanism on the active surface of the ZrO2 clusters was proposed. First layer of hydrogen molecules can react with the metal cation through a dihydrogen complex (Kubas interaction). The second layer of hydrogen molecules adsorbed around the metal oxide clusters is due to dipole-like interactions, this is because the metal particle induces dipole forces on the hydrogen molecule. The other layers could also interact by dipole forces; however, the interaction force decreases as the distance to the surface increases. The upper layers could interact with the metal cation by dipole-induced bonding; however, the interaction force decreases as the distance to the surface increases.Item New method for Ccmk-3 synthesis modified with zr applied in h2 storage(2021) Juárez, Juliana M.; Gómez Costa, Marcos B.; Venosta, Lisandro F.; Anunziata, Oscar A.In this work we develop a novel direct synthesis method of modified CMK-3 with zirconium oxide. This modification occurs during the synthesis process. Our assessment includes a one-step synthesis of nanostructured mesoporous carbon modified with zirconium oxide, the characterization of the resulting material by XRD, N2 adsorption, XPS, UV-Vis, TEM, SEM and Raman. We show the enhancement of the storage capacity of the composite material, compared to bare CMK-3.Item Mesoporous carbon cmk-3 modified with zirconia developed by direct synthesis technique applied in energy storage(2021) Gómez Costa, Marcos B.; Juárez, Juliana M.; Venosta, Lisandro F.; Anunziata, Oscar A.Nanostructured carbon material (CMK-3) modified with zirconium oxide was synthesized by a new direct synthesis technique. Zirconium oxide dispersed in carbon materials (Zr-CMK-3) were characterized by X-ray diffraction, textural properties, UV-Vis-DRS, XPS, and transmission electron microscopy analysis. The goal of this new synthesis method is to avoid the use of inorganic siliceous template (SBA-15), which leads to a shorter and cheaper way to obtain mesoporous carbon, and at the same time incorporate into the framework Zirconium atoms. Zr-CMK-3 material significantly improved H2 storage behavior (4.6% by weight at 77 K and 10 bar) compared to CMK-3 support. The synthesized material is promising in the absorption of hydrogen by weak bonding forces (physisorption). The activity of the samples to the adsorption of hydrogen molecules is attributed to the improved dispersion of the zirconium oxide, as well as the appropriate use of support, which can probably disperse the zirconium on its large surface area, allowing a great dispersion of the zirconium. The Zr+4 cation is an active species to absorb and store hydrogen through a physisorption process and the carbon plays an important role in the dispersion and size of metal particles. A hydrogen storage mechanism on the active surface of the ZrO2 clusters was proposed. First layer of hydrogen molecules can react with the metal cation through a dihydrogen complex (Kubas interaction). The second layer of hydrogen molecules adsorbed around the metal oxide clusters is due to dipole-like interactions, this is because the metal particle induces dipole forces on the hydrogen molecule. The other layers could also interact by dipole forces; however, the interaction force decreases as the distance to the surface increases. The upper layers could interact with the metal cation by dipole-induced bonding; however, the interaction force decreases as the distance to the surface increases.Item Novedoso método de síntesis del carbón mesoporoso cmk-3 modificado con circonio y su aplicación en almacenamiento de hidrógeno(2021) Gómez Costa, Marcos B.; Juárez, Juliana M.; Anunziata, Oscar A.; Venosta, Lisandro F.En este trabajo, informamos la síntesis y caracterización del material de carbono nanoestructurado (CMK-3) modificado con óxido de circonio sintetizado por una nueva técnica de síntesis directa. Este material es prometedor en la aplicación de adsorción de hidrógeno para el almacenamiento de energía. Los materiales con óxido de circonio (Zr-CMK-3) se sintetizaron con éxito y se caracterizaron por difracción de rayos X, propiedades texturales, XPS y análisis de microscopía electrónica de transmisión. El material Zr-CMK-3 mejoró significativamente el comportamiento de almacenamiento de H2 (4,6% en peso a 77 K y 10 bar) en comparación con el soporte CMK-3. El material sintetizado es prometedor en la absorción de hidrógeno por fuerzas de enlace débiles (fisisorción). Se propuso un mecanismo de adsorción de hidrógeno y se discutió el rol de catión Zr+4 en la absorción de hidrógeno.