UTN- FRC -Producción Académica de Investigación y Desarrollo
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/1932
Browse
Search Results
Item Materiales mesoporosos nanoestructurados empleando cáscara de arroz como fuente de silicio para la remoción de contaminantes emergentes(2020) Carraro, Paola; Benzaquén, Tamara; Eimer, Griselda Alejandra; Raviolo, Sofía; Oliva, Marcos IvánActualmente, los problemas ambientales han promovido el diseño de nuevos materiales más eficientes y amigables con el medio ambiente para ser utilizados en diversas aplicaciones. Un importante interés de los investigadores ha sido la posibilidad de desarrollar nuevos materiales seguros, no tóxicos y ambientalmente sostenibles, utilizando desechos y procesos más respetuosos con el medio ambiente, reduciendo el impacto ambiental que producimos en nuestro planeta. Recientemente, gran parte de las investigaciones se ha centrado en el uso eficiente de la biomasa para producir materiales y productos de valor añadido, teniendo en cuenta los aspectos tecnológicos, científicos, económicos y ambientales. Los residuos de cultivos son uno de los mayores recursos de biomasa a nivel mundial. Entre los diferentes residuos agrícolas, la cáscara de arroz (RH) es una biomasa de desecho abundante y disponible en el mundo. Estos desechos suelen quemarse para recuperar energía, produciendo cenizas de cáscara de arroz o se descartan sin más, lo que causa grandes problemas ambientales para su eliminación. Así, la ceniza de cascarilla de arroz (RHA) contiene más del 80 % en peso de sílice. Entre los diferentes materiales silíceos se encuentran los tamices moleculares mesoporosos del tipo MCM-41, que se han aplicado como soporte de diversas especies activas catalíticas debido a sus elevadas áreas específicas y volúmenes de poro. Las fuentes de sílice más utilizadas para la síntesis de estos materiales son alcóxidos metálicos como el tetraetilortosilicato (TEOS), el tetrametoxisilano (TMOS) y el hidróxido de tetrametilamonio (TMAOH), los cuales son relativamente caros y tienen efectos tóxicos. Así, la cáscara de arroz aparece como una fuente natural alternativa, ecológica, no tóxica y de bajo costo para sustituir a los precursores de sílice comerciales. Por otro lado, la prevención de los riesgos para la salud y el medio ambiente por la exposición a los llamados Contaminantes Emergentes (CE), supone hoy en día un auténtico reto. Entre ellos podemos encontrar a los denominados Disruptores Endócrinos (DEs). Estos están asociados desde hace varios años con la aparición de infertilidad, comportamiento sexual alterado, alteración de la función tiroidea, aumento de la incidencia de ciertos tipos de cáncer, entre otros. En este contexto, los Procesos Avanzados de Oxidación (PAOs) aparecen como una alternativa de degradación muy prometedora. En particular las reacciones de Fotocatálisis y fotoFenton Heterogéneas son bien conocidas por su capacidad para degradar compuestos orgánicos recalcitrantes en agua En este trabajo se sintetizaron materiales mesoporosos del tipo MCM-41 utilizando una fuente natural, no tóxica y barata de sílice a partir de la cáscara de arroz. Los soportes de sílice se modificaron con varias cargas de Fe por el método de impregnación húmeda y se analizaron físico-químicamente mediante una caracterización multitécnica. Estos materiales mesoestructurados se probaron con éxito en la degradación de ATZ, BPA y PCT en medio acuoso, mediante el proceso de foto-Fenton heterogéneo. Todos los sólidos mostraron buena regularidad estructural conservando la estructura mesoporosa luego de la incorporación del metal. La menor carga de hierro permitió un mayor porcentaje de iones aislados Fe 3+ fuertemente ligados a la superficie mesoporosa. Mientras tanto, se observó una mayor proporción de especies de óxido de hierro de mayor tamaño para las muestras con cargas metálicas más altas. Así, los resultados obtenidos mostraron que la mayor eficiencia fotocatalítica es consistente con la mayor presencia de iones aislados Fe3+ (sitios accesibles y activos para la reacción) fuertemente ligados a la superficie mesoporosa. Así, se encontró un material económicamente atractivo con un excelente rendimiento en el proceso foto-Fenton para la degradación de tres importantes contaminantes emergentes como son la atrazina, el Bisfenol A y el paracetamol.Item Caracterización de materiales mesoporosos modificados con vanadio y titanio(2020) Casuscelli, Sandra Graciela; Viola, Belén M.; Eimer, Griselda Alejandra; Cánepa, Analía LauraLos materiales mesoporosos del tipo MCM-41 presentan una estructura hexagonal con un arreglo regular de poros. Entre sus principales ventajas se encuentran su elevada área específica y el tamaño de sus poros que permiten la difusión de moléculas voluminosas. La incorporación de metales de transición en estos tamices moleculares tiene un gran interés desde el punto de vista catalítico. Por ese motivo, se sintetizaron materiales de este tipo mediante el método sol-gel incorporando V y Ti en su estructura. Para ello, se utilizó tetraetil ortosilicato (TEOS) como fuente de silicio, bromuro de cetiltrimetilamonio como surfactante (CTABr) y NaOH para ajustar el pH. Las relaciones empleadas fueron: Si/metal=60, OH/Si=0.5, CTABr/Si=0.12 y H2O/Si=132. La solución preparada se mantuvo en agitación 4 h a temperatura ambiente y 3 h a 70 °C para obtener la matriz silícea pura. Posteriormente, se incorporó sulfato de vanadilo hidratado o butóxido de titanio como fuentes de V o Ti respectivamente. El sólido obtenido fue filtrado, lavado con agua destilada hasta pH neutro y colocado en una estufa a 60 °C por 12 h. Para eliminar el surfactante, se calcinó el material en flujo de N2 hasta alcanzar 500 °C durante 6 h y luego en flujo de aire a 500 °C. Así se obtuvieron los materiales V-MCM-41 y Ti-MCM-41. El área específica obtenida fue de 1250 m2/g para la matriz silícea pura, 1183 m2/g para el V-MCM-41 y de 866 m2/g para el Ti-MCM-41. Los DRX a bajo ángulo indicaron que los materiales presentan un buen ordenamiento estructural manteniendo los picos característicos de la matriz atribuidos a los planos (100), (110) y (200). En el DRX a alto ángulo se observa un hombro ubicado a 2θ=23.3° representativo del carácter amorfo de estos materiales. Por otro lado, no se observaron reflexiones pertenecientes a óxidos metálicos, lo que sugiere que tanto el V como el Ti se encuentran dispersos en el material, y en caso de existir dichas especies, serían clusters y/o partículas de óxido de tamaño inferior al límite de detección de DRX (5 nm). El análisis por UV-Vis RD mostró bandas de absorción a 243 nm en el Ti-MCM-41 y a 250 nm en el V-MCM-41 correspondientes a las especies metálicas aisladas y tetraédricamente coordinadas con oxígeno. A 285 nm, el material con Ti presentó una segunda banda asignada a especies de Ti con grados de coordinación superiores al tetraédrico, generadas por la hidratación de la estructura y/o la oligomerización incipiente de especies de Ti que forman nanoclusters Ti-O-Ti. Tal como ha sido reportado, el análisis por FTIR muestra una banda de absorción a 458 cm-1 que se atribuye a la vibración de estiramiento del enlace Si-O. Para el material con Ti, esta banda podría estar solapada con la generada por los enlaces Ti-O-Ti que reveló el UV-Vis RD. A 800 cm-1 y 1085 cm-1 se presentan dos señales correspondientes a la vibración de estiramiento simétrico y asimétrico del Si-O tetraédrico. La banda ubicada a 1240 cm-1 se atribuye a los enlaces Si-O-Si y a 1640 cm-1 se observa una señal asociada a la presencia de H2O. Las bandas ubicadas a 3460 cm-1 y 970 cm-1 corresponden a los grupos Si-OH. Esta última señal puede estar asociada también a la vibración de los grupos V-O-Si o Ti-O-Si generada por la incorporación de heteroátomos en la estructura, consistente con lo observado por UV-Vis RD. Por lo tanto, se deduce que esta banda corresponde a un solapamiento generado por los Si-OH y los heteroátomos. Por último, el ICP indicó que la cantidad de Ti fue de 289.19 ppm (1.43% p/p) en el Ti-MCM-41 mientras que el contenido de V fue de 21.78 ppm (0.17% p/p) en el V-MCM-41.Item Estudio de propiedades de materiales mesoporosos empleando cáscara de arroz como fuente de silicio y su aplicación como fotocatalizadores(2020) Carraro, Paola; César Tita, Florencia; Benzaquén, Tamara; Eimer, Griselda AlejandraDurante los últimos años, un importante interés de los investigadores ha sido la posibilidad de desarrollar nuevos materiales seguros, no tóxicos y ambientalmente sostenibles, utilizando desechos y procesos más respetuosos con el medio ambiente, reduciendo el impacto ambiental que producimos en nuestro planeta 1 . Recientemente, gran parte de las investigaciones se ha centrado en el uso eficiente de la biomasa para producir materiales y productos de valor añadido, teniendo en cuenta los aspectos tecnológicos, científicos, económicos y ambientales. Los residuos de cultivos son uno de los mayores recursos de biomasa a nivel mundial. Entre los diferentes residuos agrícolas, la cáscara de arroz (RH) es una biomasa de desecho abundante y disponible en el mundo 2 . Estos desechos suelen quemarse para recuperar energía, produciendo cenizas de cáscara de arroz o se descartan sin más, lo que causa grandes problemas ambientales para su eliminación. La cáscara de arroz posee características químicas únicas, siendo una excelente fuente de sílice amorfa de alta pureza. Así, la ceniza de cascarilla de arroz (RHA) contiene más del 80 % en peso de sílice. Entre los diferentes materiales silíceos se encuentran los tamices moleculares mesoporosos del tipo MCM-41, que se han aplicado como soporte de diversas especies activas catalíticas debido a sus elevadas áreas específicas y volúmenes de poro 3,4 . Las fuentes de sílice más utilizadas para la síntesis de estos materiales son alcóxidos metálicos como el tetraetilortosilicato (TEOS), el tetrametoxisilano (TMOS) y el hidróxido de tetrametilamonio (TMAOH), los cuales son relativamente caros y tienen efectos tóxicos. Así, la cáscara de arroz aparece como una fuente natural alternativa, ecológica, no tóxica y de bajo costo para sustituir a los precursores de sílice comerciales. En este trabajo se sintetizaron materiales mesoporosos del tipo MCM-41 utilizando una fuente natural, no tóxica y barata de sílice a partir de la cáscara de arroz. Los soportes de sílice se modificaron con varias cargas de Fe por un método impregnación húmeda y se analizaron físico-químicamente mediante una caracterización multitécnica, para luego ser evaluados como catalizadores heterogéneos foto-Fenton para la degradación fotocatalítica de diferentes disruptores endocrinos (EDC) en medio acuoso. Todos los sólidos mostraron buena regularidad estructural conservando la estructura mesoporosa luego de la incorporación del metal. La menor carga de hierro permitió un mayor porcentaje de iones aislados Fe3+ fuertemente ligados a la superficie mesoporosa. Mientras tanto, se observó una mayor proporción de especies de óxido de hierro de mayor tamaño para las muestras con cargas metálicas más altas. Así, los resultados obtenidos mostraron que la mayor eficiencia fotocatalítica es consistente con la mayor presencia de especies de hierro finamente dispersas y estabilizadas en la estructura de la sílice, siendo los iones Fe3+ aislados los sitios accesibles y activos para la reacción. Finalmente, se obtuvo un sólido más barato derivado de la valorización de la biomasa residual y con un excelente rendimiento fotocatalítico para la degradación de EDC. Así, el uso de la cáscara de arroz como fuente de sílice sería una alternativa muy prometedora para la síntesis de materiales mesoporosos, reduciendo aún más la cantidad de desechos agrícolas.Item Solidos mesoestructurados para la remoción de contaminantes emergentes en agua.(2020) Benzaquén, Tamara; Ravanelli, Magdalena; Carraro, Paola; Eimer, Griselda AlejandraLa prevención de los riesgos para la salud y el medio ambiente por la exposición a los llamados Contaminantes Emergentes (CE), supone hoy en día un auténtico reto. Los métodos tradicionales de tratamiento sumados a la normativa vigente, no son suficientes para proteger a la población y al medio ambiente frente a estas sustancias debido a sus particulares características químicas y toxicológicas. Entre ellos podemos encontrar a los denominados Disruptores Endócrinos (DEs). Estos están asociados desde hace varios años con la aparición de infertilidad, comportamiento sexual alterado, alteración de la función tiroidea, aumento de la incidencia de ciertos tipos de cáncer, etc.1 . En este contexto, los Procesos Avanzados de Oxidación (PAOs) aparecen como una alternativa de degradación muy prometedora2. En particular las reacciones de Fotocatálisis y foto-Fenton Heterogéneas son bien conocidas por su capacidad para degradar compuestos orgánicos recalcitrantes en agua. Muchas investigaciones revelan que las estructuras mesoporosas son efectivas como catalizadores heterogéneos para la degradación de compuestos orgánicos3 . Por otro lado, ante la creciente necesidad de desarrollar alternativas tecnológicas que permitan la utilización de desechos de procesos productivos, se ha comenzado a trabajar en la posibilidad de aprovechar un residuo vegetal abundante como es la cascarilla de arroz4 , como fuente de silicio para la síntesis de los catalizadores mencionados. En el presente trabajo se sintetizaron materiales mesoporosos del tipo MCM-41 utilizando cáscara de arroz como fuente renovable de sílicio. En una primera etapa, se evaluaron dos lavados previos de la cáscara de arroz, con agua y ácido nítrico, obteniéndose sílice de alta área superficial para el lavado con ácido. El material mesoporoso silíceo se sintetizó mediante el método de tratamiento hidrotérmico utilizando el silicato extraído de la cáscara como precursor de sílice y bromuro de cetiltrimetilamonio (CTAB) como plantilla. El soporte MCM-41 luego fue modificado con Fe por el método de impregnación húmeda para su utilización como catalizadores heterogéneos, en la degradación de diferentes compuestos orgánicos en medio acuoso, como herbicidas (atrazina, ATZ), compuestos derivados de la industria del plástico (bisfenol A, BPA) y de la industria farmacéutica (paracetamol, PCT), aplicando la reacción foto-Fenton heterogénea; y así alcanzar un sistema catalítico de mayor eficiencia. Todos los sólidos sintetizados se caracterizaron físico-químicamente mediante distintas técnicas: DRX, UV-vis, SEM, adsorción - desorción de N2, Piridina, entre otras. Todos los materiales exhibieron alta superficie específica, volumen de poros y buena regularidad estructural que retiene la estructura característica de materiales mesoporoso luego de la incorporación del metal. Estos materiales mesoestructurados se probaron con éxito en la degradación de ATZ, BPA y PCT en medio acuoso, mediante el proceso de foto-Fenton heterogénea. Los distintos parámetros de reacción fueron evaluados y en las mejores condiciones encontradas el catalizador con la menor carga de hierro (2.5 %p/p de Fe) presentó la mayor degradación de contaminantes. Probablemente este comportamiento este relacionado al mayor porcentaje de iones aislados Fe3+ (sitios accesibles y activos para la reacción) fuertemente ligados a la superficie mesoporosa encontrados en este material. Así, se encontró un material económicamente atractivo con un excelente rendimiento en el proceso foto-Fenton para la degradación de tres importantes contaminantes emergentes como son la atrazina, el Bisfenol A y el paracetamol.