Mostrar el registro sencillo del ítem

dc.creatorZiccardi, I. G.
dc.creatorRey, A. A.
dc.creatorLegnani, W. E.
dc.date.accessioned2024-03-19T20:27:11Z
dc.date.available2024-03-19T20:27:11Z
dc.date.issued2022-03-01
dc.identifier.citationTrends in Computational and Applied Mathematics, 23.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12272/9929
dc.description.abstractIn the present work a method for the detection of the cardiac pathology known as atrial fibrillation is proposed by calculating different information, statistics and other nonlinear measures over ECG signals. The original database contains records corresponding to patients who are diagnosed with this disease as well as healthy subjects. To formulate the dataset the R´enyi permutation entropy, Fisher information measure, statistical complexity, Lyapunov exponent and fractal dimension were calculated, in order to determine how to combine this features to optimize the identification of the signals coming from ECG with the above mentioned cardiac pathology. With the aim to improve the results obtained in previous studies, a classification method based upon decision trees algorithms is implemented. Later a Montecarlo simulation of one thousand trials is performed with a seventy percent randomly selected from the dataset dedicated to train the classifier and the remaining thirty percent reserved to test in every trial. The quality of the classification is assessed through the computation of the area under the receiver operation characteristic curve (ROC), the F1-score and other classical performance metrics, such as the balanced accuracy, sensitivity, specificity, positive and negative predicted values. The results show that the incorporation of all these features to the dataset when are employed to train the classifier in the training task produces the best classification, in such a way that the largest quality parameter is achieved.es_ES
dc.description.sponsorshipUTN FRBAes_ES
dc.formatpdfes_ES
dc.language.isoenges_ES
dc.rightsopenAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.rights.uriAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.sourceTrends in Computational and Applied Mathematics 23(3), 569-581. (2022)es_ES
dc.subjectRenyi entropyes_ES
dc.subjectstatistical complexityes_ES
dc.subjectFisher informationes_ES
dc.subjectLyapunov exponentes_ES
dc.subjectfractal dimensiones_ES
dc.subjectatrial fibrillationes_ES
dc.subjectdecision treeses_ES
dc.titleECG signals classification using overlapping variables to detect atrial fibrillationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderI. G. Ziccardi, A. A. Rey, W. E. Legnanies_ES
dc.description.affiliationFil: Ziccardi, I. G. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Centro de Procesamiento de Señales e Imágenes (CPSI); Argentina.es_ES
dc.description.affiliationFil: Rey, A. A. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Centro de Procesamiento de Señales e Imágenes (CPSI); Argentina.es_ES
dc.description.affiliationFil: Legnani, W. E. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Centro de Procesamiento de Señales e Imágenes (CPSI); Argentina.es_ES
dc.description.peerreviewedPeer Reviewedes_ES
dc.type.versionpublisherVersiones_ES
dc.rights.useLicencia Creative Commons Atribución- No Comerciales_ES
dc.identifier.doi10.5540/tcam.2022.023.03.00569


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como openAccess