New contributions to non linear process monitoring through kernel partial least squares

Abstract

The kernel partial least squares (KPLS) method was originally focused on soft-sensor calibration for predicting online quality attributes. In this work, an analysis of the KPLS-based modeling technique and its application to nonlinear process monitoring are presented. To this effect, the measurement decomposition, the development of new specific statistics acting on non-overlapped domains, and the contribution analysis are addressed for purposes of fault detection, diagnosis, and prediction risk assessment. Some practical insights for synthesizing the models are also given, which are related to an appropriate order selection and the adoption of the kernel function parameter. A proper combination of scaled statistics allows the definition of an efficient detection index for monitoring a nonlinear process. The effectiveness of the proposed methods is confirmed by using simulation examples. Keywords: KPLS Modeling, Fault Detection, Fault Diagnosis, Prediction Risk Assessment, Nonlinear Processes.

Description

Keywords

nonlinear, process monitoring, Kernel Partial

Citation

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess