Generador eléctrico UNDI UTN.BA: suanálisis oscilatorio.
Date
2019-10-01
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Se ha construido una máquina de generación eléctrica a escala 1:10 accionada por las olas.
Este mecanismo denominado UNDI-UTN.BA fue probado en el 2017 en la pileta generadora
de olas del Instituto Nacional del Agua (INA). El presente trabajo es un ejercicio conceptual
que permite analizar su comportamiento. Se hace uso de ecuaciones diferenciales de segundo
orden, lineales, ordinarias y a coeficientes constantes. Los coeficientes propios de esta ecua-
ción son la masa puesta en juego, que para este caso es la masa del brazo oscilante más la de
la boya, el coeficiente de amortiguamiento, finalmente, se tiene el factor elástico, aquel que
en una condición ideal y sin rozamientos sostiene el movimiento oscilatorio. Así presentado el
problema, quedaría con el segundo término igual a cero. Para este caso, ese segundo término
es la motorización producida por el oleaje. En consecuencia, nuestra ecuación diferencial es
con oscilación forzada, que contendrá una expresión oscilante cosenoidal y cuyo argumento
tendrá la frecuencia propia del oleaje. Esta expresión estará afectada por un coeficiente que
deberá ser capaz de igualar a la fuerza contra electromotriz del generador, más un porcen-
tual que incluya las pérdidas (la ineficiencia de la máquina eléctrica, las pérdidas disipativas
propias del dispositivo mecánico, las pérdidas por amortiguamiento y tensión superficial del
agua, la disminución de rendimiento por la imposibilidad de estar siempre enfrentando al
oleaje en la posición óptima). Fijados los parámetros, se analizarán dos casos: en marcha
normal cargándola súbitamente a potencia nominal, y luego una igualmente súbita pérdida
total de carga eléctrica. Se demuestra en el primer caso que la máquina rápidamente entrará
en una fase estable y en la segunda situación, que la máquina tendrá un breve lapso de ines-
tabilidad que será luego sucedido por una estabilización.
The Undimotriz Group has built a 1:10 scale machine powered by waves. This UNDI.UTNBA mechanism was tested in 2017 in the INA wave generating pool. The present work is a con- ceptual exercise that allows to analyze its behavior. It makes use of differential equations of second order, linear, ordinary and constant coefficients. The coefficients of this equation are the mass put into play, which for our case is the weight of the oscillating arm plus that of the buoy, the damping coefficient, and finally, we have the elastic factor, which in an ideal condition and without friction sustains an oscillatory movement. Thus, presented the problem, would remain with the second term equal to zero. For this case, that second term is the motorization produced by the waves. Consequently our ODE is with forced oscillation that will contain a cosine-oscillating expression and whose argument will have the wave's own frequency. This expression will be affected by a coefficient that must be able to equal the force against elec- tromotive generator, plus a percentage that includes the losses (the inefficiency of the electric machine, the dissipative losses characteristic of the mechanical device, the losses by damping and tension surface water, the decrease in yield due to the impossibility of always facing the waves in the optimum position). Once all parameters are set, two cases will be analyzed: in normal operation, loading it suddenly at nominal power and then an equally sudden total loss of electric charge. We will show that in the first case the machine will quickly enter a stable phase and in the second situation, we will demonstrate that the machine will have a brief lapse of instability that will be followed by a stabilization.
The Undimotriz Group has built a 1:10 scale machine powered by waves. This UNDI.UTNBA mechanism was tested in 2017 in the INA wave generating pool. The present work is a con- ceptual exercise that allows to analyze its behavior. It makes use of differential equations of second order, linear, ordinary and constant coefficients. The coefficients of this equation are the mass put into play, which for our case is the weight of the oscillating arm plus that of the buoy, the damping coefficient, and finally, we have the elastic factor, which in an ideal condition and without friction sustains an oscillatory movement. Thus, presented the problem, would remain with the second term equal to zero. For this case, that second term is the motorization produced by the waves. Consequently our ODE is with forced oscillation that will contain a cosine-oscillating expression and whose argument will have the wave's own frequency. This expression will be affected by a coefficient that must be able to equal the force against elec- tromotive generator, plus a percentage that includes the losses (the inefficiency of the electric machine, the dissipative losses characteristic of the mechanical device, the losses by damping and tension surface water, the decrease in yield due to the impossibility of always facing the waves in the optimum position). Once all parameters are set, two cases will be analyzed: in normal operation, loading it suddenly at nominal power and then an equally sudden total loss of electric charge. We will show that in the first case the machine will quickly enter a stable phase and in the second situation, we will demonstrate that the machine will have a brief lapse of instability that will be followed by a stabilization.
Description
Keywords
undimotriz, oscilaciones, ecuaciones diferenciales, estabilidad, inestabilidad, undimotor, oscillations, differential equations, stability, instability
Citation
Proyecciones, Vol. 17 No. 2
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess