Observer-based fault detection and diagnosis strategy for industrial processes

dc.coverage.spatialNacionales_ES
dc.creatorBernardi, Emanuel
dc.creatorAdam, Eduardo J.
dc.creator.orcid0000-0001-5248-9352es_ES
dc.creator.orcid0000-0003-0156-9832es_ES
dc.date.accessioned2024-10-14T19:01:09Z
dc.date.available2024-10-14T19:01:09Z
dc.date.issued2020-07-30
dc.description.abstractThis study presents the design of a fault detection and diagnosis (FDD) scheme, composed from a bank of two types of observers, applied to linear parameter varying (LPV) systems. The first one uses a combination of reduced-order LPV observers to detect, isolate and estimate actuators faults, and the second one consists of a set of full-order LPV unknown input observers (UIO) to detect, isolate and estimate sensors faults. The observers’ design, convergence and its stability conditions are guaranteed in terms of linear matrix inequalities (LMI). Therefore, the main purpose of this work is to provide a novelty model-based observers’ technique to detect and diagnose faults upon non-linear systems. Simulation results, based on two typical chemical industrial processes, are given to illustrate and discuss the implementation and performance of such an approach.es_ES
dc.description.affiliationFil: Bernardi, Emanuel. Universidad Tecnológica Nacional. Facultad Regional San Francisco; Argentina.es_ES
dc.description.affiliationFil: Adam, Eduardo J. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina.es_ES
dc.description.peerreviewedPeer Reviewedes_ES
dc.formatpdfes_ES
dc.identifier.citationJournal of Franklin Institutees_ES
dc.identifier.doihttps://www.sciencedirect.com/science/article/abs/pii/S0016003220305305
dc.identifier.issn0016-0032
dc.identifier.urihttp://hdl.handle.net/20.500.12272/11628
dc.language.isoenges_ES
dc.language.isoenges_ES
dc.rightsembargoedAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.use.es_ES
dc.sourceJournal of Franklin Institute 357 (14): 10054-10081 (2020)es_ES
dc.subject.es_ES
dc.titleObserver-based fault detection and diagnosis strategy for industrial processeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versionpublisherVersiones_ES

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10. Observer-based fault detection and diagnosis strategy....pdf
Size:
352.39 KB
Format:
Adobe Portable Document Format
Description:
Artículo principal y único

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: