Estimation of quality variables in a continuous train of reactors using recurrent neural networks-based soft sensors
dc.creator | Perdomo, Mariano Miguel | |
dc.creator | Clementi, Luis Alberto | |
dc.creator | Vega, Jorge Rubén | |
dc.creator.orcid | 0000-0003-3735-7778 | |
dc.creator.orcid | 0000-0001-6139-4742 | |
dc.creator.orcid | 0000-0002-6225-6293 | |
dc.date.accessioned | 2025-05-22T18:44:55Z | |
dc.date.issued | 2024 | |
dc.description.abstract | The first stage in the industrial production of Styrene-Butadiene Rubber (SBR) typically consists in obtaining a latex from a train of continuous stirred tank reactors. Accurate real-time estimation of some key process variables is of paramount importance to ensure the production of high-quality rubber. Monitoring the mass conversion of monomers in the last reactor of the train is particularly important. To this effect, various soft sensors (SS) have been proposed, however they have not addressed the underlying complex dynamic relationships existing among the process variables. In this work, a SS based on recurrent neural networks (RNN) is developed to estimate the mass conversion in the last reactor of the train. The main challenge is to obtain an adequate estimate of the conversion both in its usual steady-state operation and during its frequent transient operating phases. Three architectures of RNN: Elman, GRU (Gated Recurrent Unit), and LSTM (Long Short-Term Memory) are compared to critically evaluate their performances. Moreover, a comprehensive analysis is conducted to assess the ability of these models to represent different operational modes of the train. The results reveal that the GRU network exhibits the best performance for estimating the mass conversion of monomers. Then, the performance of the proposed model is compared with a previously-developed SS, which was based on a linear estimation model with a Bayesian bias adaptation mechanism and the use of Control Charts for decision-making. The model proposed here proved to be more efficient for estimating the mass conversion of monomers, particularly during transient operating phases. Finally, to evaluate the methodology utilized for designing the SS, the same RNN architectures were trained to online estimate another quality variable: the mass fraction of Styrene bound to the copolymer. The obtained results were also acceptable | |
dc.description.affiliation | Fil: Perdomo, Mariano Miguel. CONICET-UNL. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Argentina. | |
dc.description.affiliation | Fil: Perdomo, Mariano Miguel. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina. | |
dc.description.affiliation | Fil: Clementi, Luis Alberto. CONICET-UNER. Instituto de Investigación en Bioingeniería y Bioinformática (IBB), Argentina. | |
dc.description.affiliation | Fil: Clementi, Luis A. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina. | |
dc.description.affiliation | Fil: Vega, Jorge Rubén. CONICET-UNL. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Argentina. | |
dc.description.affiliation | Fil: Vega, Jorge Rubén. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina. | |
dc.description.peerreviewed | Peer Reviewed | |
dc.format | ||
dc.identifier.citation | Perdomo, M. M.; Clementi, L. A. & Vega, J. R. (2024). Estimation of quality variables in a continuous train of reactors using recurrent neural networks-based soft sensors. Chemometrics and Intelligent Laboratory Systems, 253, 105204. https://doi.org/10.1016/j.chemolab.2024.105204 | |
dc.identifier.doi | https://doi.org/10.1016/j.chemolab.2024.105204 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12272/13012 | |
dc.identifier.uri | https://www.sciencedirect.com/science/article/abs/pii/S0169743924001448?v ia%3Dihub | |
dc.language.iso | en | |
dc.publisher | Chemometrics and Intelligent Laboratory Systems | |
dc.relation.projectid | ASECAFE0008414 | |
dc.relation.projectid | MODELADO Y MONITOREO DE PROCESOS INDUSTRIALES CONTINUOS Y SEMICONTINUOS. ALGORITMOS BASADOS EN INFERENCIA BAYESIANA Y APRENDIZAJE MAQUINAL | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.embargoEnd | 2100 | |
dc.rights.holder | Elsevier B.V. | |
dc.rights.use | © 2024 Elsevier B.V. All rights are reserved | |
dc.subject | Soft sensor | |
dc.subject | Continuous process | |
dc.subject | Rubber production | |
dc.subject | Recurrent neural network | |
dc.title | Estimation of quality variables in a continuous train of reactors using recurrent neural networks-based soft sensors | |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | publisherVersion |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Chemom. Intell. Lab. Syst. 253, 105204 - Perdomo / Clementi / Vega
- Size:
- 4.39 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 3.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: