Estimation of quality variables in a continuous train of reactors using recurrent neural networks-based soft sensors

dc.creatorPerdomo, Mariano Miguel
dc.creatorClementi, Luis Alberto
dc.creatorVega, Jorge Rubén
dc.creator.orcid0000-0003-3735-7778
dc.creator.orcid0000-0001-6139-4742
dc.creator.orcid0000-0002-6225-6293
dc.date.accessioned2025-05-22T18:44:55Z
dc.date.issued2024
dc.description.abstractThe first stage in the industrial production of Styrene-Butadiene Rubber (SBR) typically consists in obtaining a latex from a train of continuous stirred tank reactors. Accurate real-time estimation of some key process variables is of paramount importance to ensure the production of high-quality rubber. Monitoring the mass conversion of monomers in the last reactor of the train is particularly important. To this effect, various soft sensors (SS) have been proposed, however they have not addressed the underlying complex dynamic relationships existing among the process variables. In this work, a SS based on recurrent neural networks (RNN) is developed to estimate the mass conversion in the last reactor of the train. The main challenge is to obtain an adequate estimate of the conversion both in its usual steady-state operation and during its frequent transient operating phases. Three architectures of RNN: Elman, GRU (Gated Recurrent Unit), and LSTM (Long Short-Term Memory) are compared to critically evaluate their performances. Moreover, a comprehensive analysis is conducted to assess the ability of these models to represent different operational modes of the train. The results reveal that the GRU network exhibits the best performance for estimating the mass conversion of monomers. Then, the performance of the proposed model is compared with a previously-developed SS, which was based on a linear estimation model with a Bayesian bias adaptation mechanism and the use of Control Charts for decision-making. The model proposed here proved to be more efficient for estimating the mass conversion of monomers, particularly during transient operating phases. Finally, to evaluate the methodology utilized for designing the SS, the same RNN architectures were trained to online estimate another quality variable: the mass fraction of Styrene bound to the copolymer. The obtained results were also acceptable
dc.description.affiliationFil: Perdomo, Mariano Miguel. CONICET-UNL. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Argentina.
dc.description.affiliationFil: Perdomo, Mariano Miguel. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina.
dc.description.affiliationFil: Clementi, Luis Alberto. CONICET-UNER. Instituto de Investigación en Bioingeniería y Bioinformática (IBB), Argentina.
dc.description.affiliationFil: Clementi, Luis A. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina.
dc.description.affiliationFil: Vega, Jorge Rubén. CONICET-UNL. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Argentina.
dc.description.affiliationFil: Vega, Jorge Rubén. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina.
dc.description.peerreviewedPeer Reviewed
dc.formatpdf
dc.identifier.citationPerdomo, M. M.; Clementi, L. A. & Vega, J. R. (2024). Estimation of quality variables in a continuous train of reactors using recurrent neural networks-based soft sensors. Chemometrics and Intelligent Laboratory Systems, 253, 105204. https://doi.org/10.1016/j.chemolab.2024.105204
dc.identifier.doihttps://doi.org/10.1016/j.chemolab.2024.105204
dc.identifier.urihttps://hdl.handle.net/20.500.12272/13012
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0169743924001448?v ia%3Dihub
dc.language.isoen
dc.publisherChemometrics and Intelligent Laboratory Systems
dc.relation.projectidASECAFE0008414
dc.relation.projectidMODELADO Y MONITOREO DE PROCESOS INDUSTRIALES CONTINUOS Y SEMICONTINUOS. ALGORITMOS BASADOS EN INFERENCIA BAYESIANA Y APRENDIZAJE MAQUINAL
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.embargoEnd2100
dc.rights.holderElsevier B.V.
dc.rights.use© 2024 Elsevier B.V. All rights are reserved
dc.subjectSoft sensor
dc.subjectContinuous process
dc.subjectRubber production
dc.subjectRecurrent neural network
dc.titleEstimation of quality variables in a continuous train of reactors using recurrent neural networks-based soft sensors
dc.typeinfo:eu-repo/semantics/article
dc.type.versionpublisherVersion

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Chemom. Intell. Lab. Syst. 253, 105204 - Perdomo / Clementi / Vega
Size:
4.39 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.63 KB
Format:
Item-specific license agreed upon to submission
Description: