Minería de datos aplicada a datos masivos

Abstract

Las grandes cantidades de datos que se producen en la actualidad, sumadas a su heterogeneidad, hacen que las herramientas tradicionales de análisis de datos no resulten adecuadas para su recopilación, almacenamiento, gestión y an'slisis. En este contexto se comienza a hablar del término Big Data, haciendo referencia a características como gran volumen, velocidad y variedad de producción de los datos, y a las herramientas que se utilizan para encontrar valor en las mismas. La posibilidad de hallar patrones y tendencias en estas grandes cantidades de datos impacta directamente en la toma de decisiones en areas tan diversas como salud, genética, agro, predicciones climáticas, redes sociales, marketing, finanzas, educación, entre otras. Otro aspecto de interés en este tipo de análisis, es la aplicación de metodologías de gestión de proyectos de enfoque ágil en los proyectos de minería de datos, en este caso, se aplicarán metodologías específicas con el objetivo de comparar características y restricciones de cada una. En este artículo se presentan los tópicos de interés del proyecto Minería de Datos: su aplicación a repositorios de datos masivos.

Description

Keywords

Big Data, Minería de datos, Clustering, Agrupamiento, Gestión de proyectos, CRISPDM

Citation

XVII Workshop de Investigadores en Ciencias de la Computación (2016)

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess