Computational design of a massive solar-thermal collector enhanced with phase change materials

dc.creatorPeralta, Ignacio
dc.creatorFachinotti, Víctor D.
dc.creatorKoenders, Eduardus A. B.
dc.creatorCaggiano, Antonio
dc.creator.orcid0000-0003-4316-9909
dc.creator.orcid0000-0002-5702-6274
dc.creator.orcid0000-0001-8664-2554
dc.creator.orcid0000-0003-1027-2520
dc.date.accessioned2025-06-02T21:25:47Z
dc.date.issued2022-11-01
dc.description.abstractA cement-based device that can meet, partially or completely, the heating loads of a building by absorbing the solar radiation and converting it into thermal energy can be defined as a Massive Solar-Thermal Collector. The absorbing material for the incoming radiation is made of a cementitious composite, generally concrete, and flowing water inside tubes acts as a heat transfer medium. For an optimized performance, during periods of solar radiation, the device has to efficiently conduct the heat flow from the absorbing surface of the collector and transfer this heat energy to the water. Then, when the radiation is reduced or became null, the device should retain as much as possible the heat energy, reducing the heat that is escaping the collector and consequently the losses to the surrounding environment. In this work, by performing a parametric analysis, different absorbing materials are tested with the objective of finding the best configuration that maximizes the energy efficiency of the collector. Cementitious materials, in combination with Phase Change Materials with distinct melting (and solidification) temperatures, are selected as candidate absorbing materials. The weather variables of an entire year and for two different locations are considered to evaluate the behavior of these devices in opposite climates. After numerical simulations, in where an enthalpy-based finite element formulation is used to solve the physical problem, the obtained results allow to conclude that the inclusion of Phase Change Materials within the absorber material of the collectors, if it is done in a correct way, can improve the energy performance of these devices. In this study, 34 ºC and 53 ºC are chosen as the most appropriated melting temperatures, which conduct to considerable improvements in the achieved performances, and in both warm and cold climates.
dc.description.affiliationFil: Peralta, Ignacio. CONICET-UNL. Centro de Investigación en Métodos Computacionales (CIMEC); Argentina.
dc.description.affiliationFil: Peralta, Ignacio. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Laboratorio de Flujometría (FLOW); Argentina.
dc.description.affiliationFil: Peralta, Ignacio. Universität Stuttgart. Institut für Werkstoffe im Bauwesen; Alemania.
dc.description.affiliationFil: Fachinotti, Víctor D. CONICET-UNL. Centro de Investigación en Métodos Computacionales (CIMEC); Argentina.
dc.description.affiliationFil: Koenders, Eduardus A. B. Technische Universität Darmstadt. Institut für Werkstoffe im Bauwesen (IWB); Alemania.
dc.description.affiliationFil: Caggiano, Antonio. Università di Genova. Dipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA); Italia.
dc.description.peerreviewedPeer Reviewed
dc.formatpdf
dc.identifier.citationPeralta, I., Fachinotti, V. D., Koenders, E. A. B., & Caggiano, A. (2022). Diseño computacional de un colector solar térmico masivo mejorado con materiales de cambio de fase. Energy and Buildings, 274, 112437. https://doi.org/10.1016/j.enbuild.2022.112437
dc.identifier.doihttps://doi.org/10.1016/j.enbuild.2022.112437
dc.identifier.urihttps://hdl.handle.net/20.500.12272/13134
dc.language.isoen
dc.publisherEnergy and Buildings
dc.relation.projectidASECBFE0008366TC
dc.relation.projectidDiseño computacional de metamateriales térmicos funcionales en régimen transitorio aprovechando cambios de fase
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.embargoEnd2032-11-01
dc.rights.holderElsevier B.V.
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.rights.use© 2022 Elsevier B.V. All rights reserved.
dc.sourceEnergy and Buildings, 274, 112437. (2022)
dc.subjectMassive solar-thermal collector
dc.subjectCementitious composites
dc.subjectPhase change materials
dc.subjectComputational design
dc.subjectTypical meteorological year
dc.subjectEnthalpy-based formulation
dc.titleComputational design of a massive solar-thermal collector enhanced with phase change materials
dc.typeinfo:eu-repo/semantics/article
dc.type.versionpublisherVersion

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Energy and Buildings 274 - Peralta y otros
Size:
3.35 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.63 KB
Format:
Item-specific license agreed upon to submission
Description: