Computational design of a massive solar-thermal collector enhanced with phase change materials
dc.creator | Peralta, Ignacio | |
dc.creator | Fachinotti, Víctor D. | |
dc.creator | Koenders, Eduardus A. B. | |
dc.creator | Caggiano, Antonio | |
dc.creator.orcid | 0000-0003-4316-9909 | |
dc.creator.orcid | 0000-0002-5702-6274 | |
dc.creator.orcid | 0000-0001-8664-2554 | |
dc.creator.orcid | 0000-0003-1027-2520 | |
dc.date.accessioned | 2025-06-02T21:25:47Z | |
dc.date.issued | 2022-11-01 | |
dc.description.abstract | A cement-based device that can meet, partially or completely, the heating loads of a building by absorbing the solar radiation and converting it into thermal energy can be defined as a Massive Solar-Thermal Collector. The absorbing material for the incoming radiation is made of a cementitious composite, generally concrete, and flowing water inside tubes acts as a heat transfer medium. For an optimized performance, during periods of solar radiation, the device has to efficiently conduct the heat flow from the absorbing surface of the collector and transfer this heat energy to the water. Then, when the radiation is reduced or became null, the device should retain as much as possible the heat energy, reducing the heat that is escaping the collector and consequently the losses to the surrounding environment. In this work, by performing a parametric analysis, different absorbing materials are tested with the objective of finding the best configuration that maximizes the energy efficiency of the collector. Cementitious materials, in combination with Phase Change Materials with distinct melting (and solidification) temperatures, are selected as candidate absorbing materials. The weather variables of an entire year and for two different locations are considered to evaluate the behavior of these devices in opposite climates. After numerical simulations, in where an enthalpy-based finite element formulation is used to solve the physical problem, the obtained results allow to conclude that the inclusion of Phase Change Materials within the absorber material of the collectors, if it is done in a correct way, can improve the energy performance of these devices. In this study, 34 ºC and 53 ºC are chosen as the most appropriated melting temperatures, which conduct to considerable improvements in the achieved performances, and in both warm and cold climates. | |
dc.description.affiliation | Fil: Peralta, Ignacio. CONICET-UNL. Centro de Investigación en Métodos Computacionales (CIMEC); Argentina. | |
dc.description.affiliation | Fil: Peralta, Ignacio. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Laboratorio de Flujometría (FLOW); Argentina. | |
dc.description.affiliation | Fil: Peralta, Ignacio. Universität Stuttgart. Institut für Werkstoffe im Bauwesen; Alemania. | |
dc.description.affiliation | Fil: Fachinotti, Víctor D. CONICET-UNL. Centro de Investigación en Métodos Computacionales (CIMEC); Argentina. | |
dc.description.affiliation | Fil: Koenders, Eduardus A. B. Technische Universität Darmstadt. Institut für Werkstoffe im Bauwesen (IWB); Alemania. | |
dc.description.affiliation | Fil: Caggiano, Antonio. Università di Genova. Dipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA); Italia. | |
dc.description.peerreviewed | Peer Reviewed | |
dc.format | ||
dc.identifier.citation | Peralta, I., Fachinotti, V. D., Koenders, E. A. B., & Caggiano, A. (2022). Diseño computacional de un colector solar térmico masivo mejorado con materiales de cambio de fase. Energy and Buildings, 274, 112437. https://doi.org/10.1016/j.enbuild.2022.112437 | |
dc.identifier.doi | https://doi.org/10.1016/j.enbuild.2022.112437 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12272/13134 | |
dc.language.iso | en | |
dc.publisher | Energy and Buildings | |
dc.relation.projectid | ASECBFE0008366TC | |
dc.relation.projectid | Diseño computacional de metamateriales térmicos funcionales en régimen transitorio aprovechando cambios de fase | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | Attribution-NonCommercial 4.0 International | en |
dc.rights.embargoEnd | 2032-11-01 | |
dc.rights.holder | Elsevier B.V. | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights.use | © 2022 Elsevier B.V. All rights reserved. | |
dc.source | Energy and Buildings, 274, 112437. (2022) | |
dc.subject | Massive solar-thermal collector | |
dc.subject | Cementitious composites | |
dc.subject | Phase change materials | |
dc.subject | Computational design | |
dc.subject | Typical meteorological year | |
dc.subject | Enthalpy-based formulation | |
dc.title | Computational design of a massive solar-thermal collector enhanced with phase change materials | |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | publisherVersion |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Energy and Buildings 274 - Peralta y otros
- Size:
- 3.35 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 3.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: