Análisis multi-físico mediante el método de elementos finitos de experimentos de compresión in-situ y caracterización eléctrica de micropilares
Date
2020-05-12
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
La compresión de micropilares es una técnica relativamente joven que permite estudiar las propiedades mecánicas en recubrimientos finos y materiales masivos, en la microescala. El experimento realiza la compresión del espécimen con un indentador de cara plana en un estado homogéneo de tensiones y determina de forma directa la respuesta mecánica del material estudiado. Los micropilares son fabricados por la técnica “FIB Milling”, donde se maquina el recubrimiento o material masivo en un microscopio con un haz de iones, es decir, removiendo material hasta obtener la forma
deseada. Además, es posible realizar una caracterización eléctrica en simultaneo a la deformación del espécimen para determinar si se producen cambios en las propiedades eléctricas del material. Se han llevado a cabo numerosos estudios empleando el método de los elementos finitos para comprender el comportamiento mecánico de los micropilares y obtener información sobre las propiedades mecánicas y el estado de tensiones. Sin embargo, aún existe una brecha en el estudio de las propiedades eléctricas de los micropilares y la interacción entre los fenómenos físicos que se manifiestan durante el experimento. En este trabajo, se llevó a cabo el modelado multifísico mediante el método de elementos finitos de un experimento de compresión en un sistema multicapas metal/metal. Se realizó un estudio paramétrico considerando diferentes valores de espesores de capa, diámetros de los micropilares y corrientes eléctricas para analizar el comportamiento mecánico y termoeléctrico durante la compresión y la caracterización eléctrica. Las resultados del modelo permitieron establecer una serie de parámetros sugeridos para la configuración experimental con el objetivo de minimizar la influencia de los fenómenos físicos involucrados y obtener una caracterización satisfactoria.
Micropillar compression is a novel technique that allows studying the mechanical properties of thin films and bulk materials in the microscale. This methodology implements the compression of the specimen by a flat-ended indenter in a homogeneous stress state and determines the mechanical response of the material in a direct way. Micropillars are fabricated by “FIB Milling”, in a microscope where the thin film or bulk material is machined by an ion beam, which removes the material until the desired shape is obtained. In addition, it is possible to implement an electrical characterization during to the strain of the specimen to determine if there are changes in the electrical properties of the studied material. Several studies had been carried out using the Finite Element Method to understand the deformation behavior of micropillars and to obtain information about the mechanical properties and the stress state. However, there is still a knowledge gap in the electrical characterization and the interplay between the involved effects. during to the strain of the specimen to determine if there are changes in the electrical properties of the studied material. Several studies had been carried out using the Finite Element Method to understand the deformation behavior of micropillars and to obtain information about the mechanical properties and the stress state. However, there is still a knowledge gap in the electrical characterization and the interplay between the involved effects. In this work, a multiphysical model using the finite element method of compression experiments in a multilayered metal/metal system was carried out. A parametric study was carried out considering different values of layer thickness, diameter of the micropillars and electrical currents to analyze the mechanical and thermoelectric behavior during compression and electrical characterization. The results of the model allowed to establish suggested parameters for the experimental setup with the aim of minimize the disturbing influences of the involved physical phenomena and obtaining an interpretable characterization.
Micropillar compression is a novel technique that allows studying the mechanical properties of thin films and bulk materials in the microscale. This methodology implements the compression of the specimen by a flat-ended indenter in a homogeneous stress state and determines the mechanical response of the material in a direct way. Micropillars are fabricated by “FIB Milling”, in a microscope where the thin film or bulk material is machined by an ion beam, which removes the material until the desired shape is obtained. In addition, it is possible to implement an electrical characterization during to the strain of the specimen to determine if there are changes in the electrical properties of the studied material. Several studies had been carried out using the Finite Element Method to understand the deformation behavior of micropillars and to obtain information about the mechanical properties and the stress state. However, there is still a knowledge gap in the electrical characterization and the interplay between the involved effects. during to the strain of the specimen to determine if there are changes in the electrical properties of the studied material. Several studies had been carried out using the Finite Element Method to understand the deformation behavior of micropillars and to obtain information about the mechanical properties and the stress state. However, there is still a knowledge gap in the electrical characterization and the interplay between the involved effects. In this work, a multiphysical model using the finite element method of compression experiments in a multilayered metal/metal system was carried out. A parametric study was carried out considering different values of layer thickness, diameter of the micropillars and electrical currents to analyze the mechanical and thermoelectric behavior during compression and electrical characterization. The results of the model allowed to establish suggested parameters for the experimental setup with the aim of minimize the disturbing influences of the involved physical phenomena and obtaining an interpretable characterization.
Description
Keywords
Caracterización eléctrica, Elementos finitos, Compresión in situ, Micropilares, Sistemas multicapas, Modelización
Citation
PFC 1908A Ingeniería Electromecánica FRCU
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/embargoedAccess