Dynamic Tuning of a Forest Fire Prediction Parallel Method

Abstract

Different parameters feed mathematical and/or empirical models. However, the uncertainty (or lack of precision) present in such parameters usually impacts in the quality of the output/recommendation of prediction models. Fortunately, there exist uncertainty reduction methods which enable the obtention of more accurate solutions. One of such methods is ESSIM-DE (Evolutionary Statistical System with Island Model and Differential Evolution), a general purpose method for prediction and uncertainty reduction. ESSIM-DE has been used for the forest fireline prediction, and it is based on statistical analysis, parallel computing, and differential evolution. In this work, we enrich ESSIM-DE with an automatic and dynamic tuning strategy, to adapt the generational parameter of the evolutionary process in order to avoid premature convergence and/or stagnation, and to improve the general performance of the predictive tool. We describe the metrics, the tuning points and actions, and we show the results for different controlled fires.

Description

Keywords

Dynamic tuning, Fire prediction, Differential Evolution, Parallel computing

Citation

Springer Nature Switzerland AG 2020

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as openAccess