Dynamic Tuning of a Forest Fire Prediction Parallel Method

dc.creatorCaymes Scutari, Paola
dc.creatorTardivo, María
dc.creatorBianchini, Germán
dc.creatorMéndez Garabetti, Miguel
dc.date.accessioned2023-06-21T16:11:11Z
dc.date.available2023-06-21T16:11:11Z
dc.date.issued2020-01-01
dc.description.abstractDifferent parameters feed mathematical and/or empirical models. However, the uncertainty (or lack of precision) present in such parameters usually impacts in the quality of the output/recommendation of prediction models. Fortunately, there exist uncertainty reduction methods which enable the obtention of more accurate solutions. One of such methods is ESSIM-DE (Evolutionary Statistical System with Island Model and Differential Evolution), a general purpose method for prediction and uncertainty reduction. ESSIM-DE has been used for the forest fireline prediction, and it is based on statistical analysis, parallel computing, and differential evolution. In this work, we enrich ESSIM-DE with an automatic and dynamic tuning strategy, to adapt the generational parameter of the evolutionary process in order to avoid premature convergence and/or stagnation, and to improve the general performance of the predictive tool. We describe the metrics, the tuning points and actions, and we show the results for different controlled fires.es_ES
dc.description.affiliationUniversidad Tecnológica Nacional. Facultad Regional Mendoza; Argentinaes_ES
dc.description.peerreviewedPeer Reviewedes_ES
dc.formatpdfes_ES
dc.identifier.citationSpringer Nature Switzerland AG 2020es_ES
dc.identifier.doi10.1007/978-3-030-48325-8_2
dc.identifier.urihttp://hdl.handle.net/20.500.12272/8073
dc.language.isoenges_ES
dc.rightsopenAccesses_ES
dc.rights.holderUniversidad Tecnológica Nacional. Facultad Regional Mendozaes_ES
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.rights.uriCC0 1.0 Universal*
dc.rights.useAtribuciónes_ES
dc.sourceComputer Science 1184, 19-34. (2020)es_ES
dc.subjectDynamic tuning, Fire prediction, Differential Evolution, Parallel computinges_ES
dc.titleDynamic Tuning of a Forest Fire Prediction Parallel Methodes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versionacceptedVersiones_ES

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
01_126_ComputerScience.pdf
Size:
1.85 MB
Format:
Adobe Portable Document Format
Description:
Computer Science

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: