An adaptive soft sensor for on-line monitoring the mass conversion in the emulsion copolymerization of the continuous SBR process
dc.creator | Sanseverinatti, Carlos Ignacio | |
dc.creator | Perdomo, Mariano Miguel | |
dc.creator | Clementi, Luis Alberto | |
dc.creator | Vega, Jorge Rubén | |
dc.creator.orcid | 0000-0003-4201-4067 | |
dc.creator.orcid | 0000-0003-3735-7778 | |
dc.creator.orcid | 0000-0001-6139-4742 | |
dc.creator.orcid | 0000-0002-6225-6293 | |
dc.date.accessioned | 2025-05-21T20:21:02Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Soft sensors (SS) are of importance in monitoring polymerization processes because numerous production and quality variables cannot be measured online. Adaptive SSs are of interest to maintain accurate estimations under disturbances and changes in operating points. This study proposes an adaptive SS to online estimate the mass conversion in the emulsion copolymerization required for the production of Styrene-Butadiene rubber (SBR). The SS includes a bias term calculated from sporadic laboratory measurements. Typically, the bias is updated every time a new laboratory report becomes available, but this strategy leads to unnecessarily frequent bias updates. The SS includes a statistic-based tool to avoid unnecessary bias updates and reduce the variability of the bias with respect to classical approaches. A control chart (CC) for individual determinations combined with an algorithmic Cusum is used to monitor the statistical stability of the average prediction error. The adaptive SS enables a bias update only when a loss of said statistical stability is detected. Several bias update methods are tested on a simulated industrial train of reactors for the latex production in the SBR process. The best results are obtained by combining the proposed CC-based approach with a previously developed Bayesian bias update strategy. | |
dc.description.affiliation | Fil: Sanseverinatti, Carlos Ignacio. CONICET-UNL. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Argentina. | |
dc.description.affiliation | Fil: Sanseverinatti, Carlos Ignacio. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina. | |
dc.description.affiliation | Fil: Perdomo, Mariano M. CONICET-UNL. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Argentina. | |
dc.description.affiliation | Fil: Perdomo, Mariano M. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina. | |
dc.description.affiliation | Fil: Clementi, Luis Alberto. CONICET-UNER. Instituto de Investigación en Bioingeniería y Bioinformática (IBB), Argentina. | |
dc.description.affiliation | Fil: Clementi, Luis A. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina. | |
dc.description.affiliation | Fil: Vega, Jorge Rubén. CONICET-UNL. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Argentina. | |
dc.description.affiliation | Fil: Vega, Jorge Rubén. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina. | |
dc.description.peerreviewed | Peer Reviewed | |
dc.format | ||
dc.identifier.citation | Sanseverinatti, C. I.; Perdomo, M. M.; Clementi, L. A. & Vega, J. R. (2023). An Adaptive Soft Sensor for On-Line Monitoring the Mass Conversion in the Emulsion Copolymerization of the Continuous SBR Process. Macromolecular Reaction Engineering 7(5), 2300025. https://doi.org/10.1002/mren.202300025 | |
dc.identifier.doi | https://doi.org/10.1002/mren.202300025 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12272/13000 | |
dc.identifier.uri | https://doi.org/10.1002/mren.202300025 | |
dc.language.iso | en | |
dc.publisher | Macromolecular Reaction Engineering | |
dc.relation.projectid | ASECAFE0008414 | |
dc.relation.projectid | MODELADO Y MONITOREO DE PROCESOS INDUSTRIALES CONTINUOS Y SEMICONTINUOS. ALGORITMOS BASADOS EN INFERENCIA BAYESIANA Y APRENDIZAJE MAQUINAL | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | Attribution 4.0 International | en |
dc.rights.embargoEnd | 2100 | |
dc.rights.holder | Wiley-VCH GmbH | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights.use | Material con derechos de CopyRight | |
dc.source | Macromolecular Reaction Engineering 7(5), 2300025 (2023) | |
dc.subject | Process monitoring | |
dc.subject | Soft sensors | |
dc.subject | Control chart | |
dc.subject | Continous process | |
dc.subject | Styrene butadiene rubber | |
dc.title | An adaptive soft sensor for on-line monitoring the mass conversion in the emulsion copolymerization of the continuous SBR process | |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | publisherVersion |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 3.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: