Inserción admisible de vehículos eléctricos en la red de distribución de una ciudad : un enfoque probabilístico
Date
2023-10-05
Journal Title
Journal ISSN
Volume Title
Publisher
XII SeNE
Abstract
La conciencia sobre el desarrollo sostenible ha incrementado los esfuerzos orientados a disminuir los consumos energéticos y las emisiones indeseables para el medioambiente y la salud de las personas. En los últimos años ha crecido el fomento y el uso de vehículos eléc-tricos (VEs), y esta tendencia en el sector del transporte modifica los patrones de demanda de energía eléctrica por parte de los usuarios. A su vez, las demandas son características de cada región en particular, dependiendo de los modelos de VEs de más fácil acceso para la población, las distancias diarias medias recorridas, los horarios de arribo al hogar, las con-diciones climáticas y los tipos de tarifas aplicadas, entre otras variables.
El presente trabajo propone modelar probabilísticamente la demanda de VEs de una ciu-dad y realizar simulaciones de flujos de potencia que permitan inferir un nivel aproximado de inserción admisible de VEs en la red de distribución. El nivel de inserción de VEs se calcula como la relación entre el número de VEs y la cantidad de vehículos convencionales existentes. Específicamente, se adopta como laso de estudio la red de distribución de la ciudad de Santo Tomé (Santa Fe, Argentina). El modelado considera un enfoque estadístico para las distancias transitadas, los horarios de arribo al hogar, y los consumos por distancia recorrida. Por otra parte, se considera una recarga lenta de los VEs de 3 kW y una eficiencia de recarga del 95%. El modelado de la red se implementa en Python, utilizando la librería de acceso abierto Pandapower.
Los resultados de simulación sugieren que la red actual admite un porcentaje considera-ble de inserción de VEs. Asimismo, es posible identificar aquellos distribuidores críticos que sólo podrían admitir un reducido nivel de inserción de VEs. En conclusión, el modelado pro-babilístico de la demanda de VEs permite determinar el nivel admisión de este nuevo tipo de tecnologías en la red de estudio y en cada distribuidor. En base a proyecciones temporales de la adquisición de VEs, es posible estimar el tiempo en que se incumplirán los niveles admisibles de operación de la red, permitiendo así planificar obras de infraestructura orien-tadas a soportar este nuevo patrón de demanda. Por otra parte, se destaca la importancia de contar con datos reales del comportamiento de los usuarios en la región de estudio para lograr modelos de demanda más precisos.
Awareness about sustainable development has increased the efforts aimed at reducing energy consumption and undesirable emissions for the environment and human heal-th. In recent years, there has been a growing promotion and use of electric vehicles (EV), and this trend in the transportation sector modifies the energy demand patterns of users. Additionally, these demands vary depending on the features of each specific region, influen-ced by aspects such as the accessibility of EV models by the population, average daily travel distances, home arrival times, weather conditions, and types of applied tariffs, among other variables. This work proposes a probabilistic modelling of the EVs demand in a city and performs power flow simulations to estimate an approximate level of admissible insertion of EV in the distribution network. The level of insertion is calculated as the ratio between the number of EV and the number of existing conventional vehicles. Specifically, the distribution network of Santo Tomé city (Santa Fe, Argentina) is adopted as a case study. The modelling strate-gy employs a statistical approach to consider travelled distances, home arrival times, and consumption per distance travelled. Furthermore, it assumes a slow charging of 3 kW and a charging efficiency of 95%. The network modelling is implemented in Python, using the open-access Pandapower library. The simulation results suggest that the current network can support a significant per-centage of EV integration. Additionally, it is possible to identify critical distributors that can only support a limited level of EV integration. In conclusion, the probabilistic modelling of the demand allows determining the admitted level of this new technology type in the study network and in each distributor. Based on time projections for the acquisition of EV, it is possible to estimate the time in which the admissible levels of network operation would be exceeded, enabling the planning of infrastructure projects aimed at supporting this new de-mand pattern. Furthermore, the importance of having real user behaviour data in the study region is emphasized to achieve more accurate demand models.
Awareness about sustainable development has increased the efforts aimed at reducing energy consumption and undesirable emissions for the environment and human heal-th. In recent years, there has been a growing promotion and use of electric vehicles (EV), and this trend in the transportation sector modifies the energy demand patterns of users. Additionally, these demands vary depending on the features of each specific region, influen-ced by aspects such as the accessibility of EV models by the population, average daily travel distances, home arrival times, weather conditions, and types of applied tariffs, among other variables. This work proposes a probabilistic modelling of the EVs demand in a city and performs power flow simulations to estimate an approximate level of admissible insertion of EV in the distribution network. The level of insertion is calculated as the ratio between the number of EV and the number of existing conventional vehicles. Specifically, the distribution network of Santo Tomé city (Santa Fe, Argentina) is adopted as a case study. The modelling strate-gy employs a statistical approach to consider travelled distances, home arrival times, and consumption per distance travelled. Furthermore, it assumes a slow charging of 3 kW and a charging efficiency of 95%. The network modelling is implemented in Python, using the open-access Pandapower library. The simulation results suggest that the current network can support a significant per-centage of EV integration. Additionally, it is possible to identify critical distributors that can only support a limited level of EV integration. In conclusion, the probabilistic modelling of the demand allows determining the admitted level of this new technology type in the study network and in each distributor. Based on time projections for the acquisition of EV, it is possible to estimate the time in which the admissible levels of network operation would be exceeded, enabling the planning of infrastructure projects aimed at supporting this new de-mand pattern. Furthermore, the importance of having real user behaviour data in the study region is emphasized to achieve more accurate demand models.
Description
Keywords
Vehículos eléctricos, Red de distribución eléctrica, Modelado probabilístico de la demanda, Electric vehicles, Electric distribution network, Probabilistic demand modeling
Citation
Perdomo, M.M.; Manassero, U. & Vega, J.R. (5 y 6 de octubre de 2023). Inserción admisible de vehículos eléctricos en la red de distribución de una ciudad : un enfoque probabilístico. XII Seminario Nacional de “Energía y su Uso Eficiente” (SeNE 2023), UTN F.R. San Francisco, Argentina.
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess