Predictor de deserción universitaria
Date
2021-04-01
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
La deserción estudiantil siempre ha sido un tema de preocupación debido a sus
múltiples implicancias. En este trabajo se propone la aplicación de técnicas de
reconocimiento de patrones para exponer información útil y formular reglas de
inferencia en sistemas de diagnóstico automático. De esta manera se generan
modelos predictivos de deserción universitaria en la UTN.BA, a partir de bases de
datos de estudiantes de la carrera de Ingeniería en Sistemas de la Información
del plan K08. Se construyeron dos modelos, uno basado sobre Máquinas de
Vectores de Soporte y otro sobre Redes neuronales. Ambos presentan resultados
muy similares reconociendo a estudiantes en situación de deserción con una
exactitud de 79%.
Dropping out has been a cause of concern due to its multiple implications. In this work, the application of pattern recognition techniques is proposed to make explicit meaningful information to be used later in expert systems. The application of these techniques was aimed at generating predictive models of university dropout at the UTN.BA, from databases of students of the Information Systems Engineering career of the K08 plan. Two models were built, one based on Support Vector Machines and the other on Neural Networks. Both present very similar results, recognizing dropout students with an accuracy of 79%.
Dropping out has been a cause of concern due to its multiple implications. In this work, the application of pattern recognition techniques is proposed to make explicit meaningful information to be used later in expert systems. The application of these techniques was aimed at generating predictive models of university dropout at the UTN.BA, from databases of students of the Information Systems Engineering career of the K08 plan. Two models were built, one based on Support Vector Machines and the other on Neural Networks. Both present very similar results, recognizing dropout students with an accuracy of 79%.
Description
Keywords
minería de datos, predictor de deserción universitaria, SVM, redes neuronales, aprendizaje automático, knowledge data discovery, data minning, university dropout predictor, neural networks, machine learning
Citation
Proyecciones, Vol. 19 No.1
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as openAccess