A regularized approach for derivative-based numerical solution of non-linearities in phase change static hysteresis modeling

dc.creatorDittler, Ramiro A.
dc.creatorDemarchi, María Cecilia
dc.creatorÁlvarez-Hostos, Juan C.
dc.creatorAlbanesi, Alejandro E.
dc.creatorTourn, Benjamín A.
dc.creator.orcid0009-0007-3215-2833
dc.creator.orcid0009-0009-0736-0256
dc.creator.orcid0000-0002-4636-4948
dc.creator.orcid0000-0002-8315-2629
dc.creator.orcid0009-0003-1345-4693
dc.date.accessioned2025-06-02T19:46:55Z
dc.date.issued2025-04
dc.description.abstractPhase change materials (PCMs) represent a promising solution for thermal energy storage (TES) since they can store and release energy in the form of latent heat during solid↔liquid transitions. Nevertheless, accurately simulating the thermal behavior of PCMs remains challenging due to the non-linearities concerning latent heat effects and enthalpy hysteresis. This work introduces a stable and robust procedure based on the finite element method (FEM) under a mixed enthalpy–temperature formulation to address such non-linearities, which enables the numerical solutions using derivative-based algorithms such as the Newton–Raphson (NR) method. The static hysteresis model (SHM) is implemented in the FEM-based formulation via a regularization of the liquid fraction function in response to the sign of the temperature rate. This novel approach ensures a continuous and smooth heating↔cooling transition while retaining the SHM energy-conservative features to properly solve its non-linearities. The method is validated through a one-dimensional benchmark problem, demonstrating high performance and physical fidelity for both complete and partial phase changes. It achieves second-order convergence rates, ensures numerical stability even for large time steps, and maintains accuracy under diverse thermal boundary conditions. Finally, the method is extended to two-dimensional problems, highlighting its robustness and scalability for practical applications in TES systems.
dc.description.affiliationFil: Dittler, Ramiro A. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina.
dc.description.affiliationFil: Dittler, Ramiro A. CONICET-UNL. Centro de Investigación en Métodos Computacionales (CIMEC); Argentina.
dc.description.affiliationFil: Demarchi, María Cecilia. CONICET-UNL. Centro de Investigación en Métodos Computacionales (CIMEC); Argentina.
dc.description.affiliationFil: Álvarez-Hostos, Juan C. CONICET-UNL. Centro de Investigación en Métodos Computacionales (CIMEC); Argentina.
dc.description.affiliationFil: Álvarez-Hostos, Juan C. CONICET-Universidad Nacional de Rafaela. Centro de Investigación y Transferencia Rafaela (CIT-Rafaela); Argentina.
dc.description.affiliationFil: Álvarez Hostos, Juan C. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de materiales; Argentina.
dc.description.affiliationFil: Albanesi, Alejandro E. CONICET-UNL. Centro de Investigación en Métodos Computacionales (CIMEC); Argentina.
dc.description.affiliationFil: Tourn, Benjamín A. CONICET-Universidad Nacional de Rafaela. Centro de Investigación y Transferencia Rafaela (CIT-Rafaela); Argentina.
dc.description.peerreviewedPeer Reviewed
dc.formatpdf
dc.identifier.citationDittler, R. A., Demarchi, M. C., Álvarez-Hostos, J. C., Albanesi, A. E., & Tourn, B. A. (2025). A regularized approach for derivative-based numerical solution of non-linearities in phase change static hysteresis modeling. International Communications in Heat and Mass Transfer, 163, 108691. https://doi.org/10.1016/j.icheatmasstransfer.2025.108691
dc.identifier.doihttps://doi.org/10.1016/j.icheatmasstransfer.2025.108691
dc.identifier.urihttps://hdl.handle.net/20.500.12272/13127
dc.language.isoen
dc.publisherInternational Communications in Heat and Mass Transfer
dc.relation.projectidASECBFE0008366TC
dc.relation.projectidDiseño computacional de metamateriales térmicos funcionales en régimen transitorio aprovechando cambios de fase
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.embargoEnd2035-04
dc.rights.holderElsevier B.V.
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.rights.use© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
dc.sourceInternational Communications in Heat and Mass Transfer, 163, 108691. (2025)
dc.subjectHysteresis
dc.subjectRegularization
dc.subjectFinite element method
dc.subjectNewton–Raphson
dc.subjectPhase change materials
dc.subjectEnthalpy–temperature formulation
dc.titleA regularized approach for derivative-based numerical solution of non-linearities in phase change static hysteresis modeling
dc.typeinfo:eu-repo/semantics/article
dc.type.versionpublisherVersion

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Int. Commun. Heat Mass Transf. 163 - Dittler y otros
Size:
2.99 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.63 KB
Format:
Item-specific license agreed upon to submission
Description: