A regularized approach for derivative-based numerical solution of non-linearities in phase change static hysteresis modeling
dc.creator | Dittler, Ramiro A. | |
dc.creator | Demarchi, María Cecilia | |
dc.creator | Álvarez-Hostos, Juan C. | |
dc.creator | Albanesi, Alejandro E. | |
dc.creator | Tourn, Benjamín A. | |
dc.creator.orcid | 0009-0007-3215-2833 | |
dc.creator.orcid | 0009-0009-0736-0256 | |
dc.creator.orcid | 0000-0002-4636-4948 | |
dc.creator.orcid | 0000-0002-8315-2629 | |
dc.creator.orcid | 0009-0003-1345-4693 | |
dc.date.accessioned | 2025-06-02T19:46:55Z | |
dc.date.issued | 2025-04 | |
dc.description.abstract | Phase change materials (PCMs) represent a promising solution for thermal energy storage (TES) since they can store and release energy in the form of latent heat during solid↔liquid transitions. Nevertheless, accurately simulating the thermal behavior of PCMs remains challenging due to the non-linearities concerning latent heat effects and enthalpy hysteresis. This work introduces a stable and robust procedure based on the finite element method (FEM) under a mixed enthalpy–temperature formulation to address such non-linearities, which enables the numerical solutions using derivative-based algorithms such as the Newton–Raphson (NR) method. The static hysteresis model (SHM) is implemented in the FEM-based formulation via a regularization of the liquid fraction function in response to the sign of the temperature rate. This novel approach ensures a continuous and smooth heating↔cooling transition while retaining the SHM energy-conservative features to properly solve its non-linearities. The method is validated through a one-dimensional benchmark problem, demonstrating high performance and physical fidelity for both complete and partial phase changes. It achieves second-order convergence rates, ensures numerical stability even for large time steps, and maintains accuracy under diverse thermal boundary conditions. Finally, the method is extended to two-dimensional problems, highlighting its robustness and scalability for practical applications in TES systems. | |
dc.description.affiliation | Fil: Dittler, Ramiro A. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina. | |
dc.description.affiliation | Fil: Dittler, Ramiro A. CONICET-UNL. Centro de Investigación en Métodos Computacionales (CIMEC); Argentina. | |
dc.description.affiliation | Fil: Demarchi, María Cecilia. CONICET-UNL. Centro de Investigación en Métodos Computacionales (CIMEC); Argentina. | |
dc.description.affiliation | Fil: Álvarez-Hostos, Juan C. CONICET-UNL. Centro de Investigación en Métodos Computacionales (CIMEC); Argentina. | |
dc.description.affiliation | Fil: Álvarez-Hostos, Juan C. CONICET-Universidad Nacional de Rafaela. Centro de Investigación y Transferencia Rafaela (CIT-Rafaela); Argentina. | |
dc.description.affiliation | Fil: Álvarez Hostos, Juan C. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de materiales; Argentina. | |
dc.description.affiliation | Fil: Albanesi, Alejandro E. CONICET-UNL. Centro de Investigación en Métodos Computacionales (CIMEC); Argentina. | |
dc.description.affiliation | Fil: Tourn, Benjamín A. CONICET-Universidad Nacional de Rafaela. Centro de Investigación y Transferencia Rafaela (CIT-Rafaela); Argentina. | |
dc.description.peerreviewed | Peer Reviewed | |
dc.format | ||
dc.identifier.citation | Dittler, R. A., Demarchi, M. C., Álvarez-Hostos, J. C., Albanesi, A. E., & Tourn, B. A. (2025). A regularized approach for derivative-based numerical solution of non-linearities in phase change static hysteresis modeling. International Communications in Heat and Mass Transfer, 163, 108691. https://doi.org/10.1016/j.icheatmasstransfer.2025.108691 | |
dc.identifier.doi | https://doi.org/10.1016/j.icheatmasstransfer.2025.108691 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12272/13127 | |
dc.language.iso | en | |
dc.publisher | International Communications in Heat and Mass Transfer | |
dc.relation.projectid | ASECBFE0008366TC | |
dc.relation.projectid | Diseño computacional de metamateriales térmicos funcionales en régimen transitorio aprovechando cambios de fase | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | Attribution-NonCommercial 4.0 International | en |
dc.rights.embargoEnd | 2035-04 | |
dc.rights.holder | Elsevier B.V. | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights.use | © 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. | |
dc.source | International Communications in Heat and Mass Transfer, 163, 108691. (2025) | |
dc.subject | Hysteresis | |
dc.subject | Regularization | |
dc.subject | Finite element method | |
dc.subject | Newton–Raphson | |
dc.subject | Phase change materials | |
dc.subject | Enthalpy–temperature formulation | |
dc.title | A regularized approach for derivative-based numerical solution of non-linearities in phase change static hysteresis modeling | |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | publisherVersion |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Int. Commun. Heat Mass Transf. 163 - Dittler y otros
- Size:
- 2.99 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 3.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: