Preparation and characterization of graphite anodes for lithium ion batteries

Abstract

The lithium-ion batteries are energy storage systems of high performance and low cost. They are employed in multiple portable devices and these require the use of increasingly smaller and lighter batteries with high energy and power density, fast charging and long service life. Moreover, these systems are promising for use in electric or hybrid vehicles. However, the lithium-ion battery still requires to improve the electrode materials properties, such as cost, energy density, cycle life, safety, and environmental compatibility. These batteries use carbon as anode material, usually synthetic graphite, because of its high coulombic efficiency and acceptable specific capacity for the formation of intercalation compounds (LiC6). In this paper the methodology used to prepare and characterize the reversible and irreversible capacity and, cyclic stability of graphite materials as anodes in lithium-ion batteries of commercial carbon and Sungite carbon, is presented. The results obtained using electrochemical techniques, are discussed.

Description

Keywords

preparation; characterization; graphite anodes; lithium ion batteries

Citation

Endorsement

Review

Supplemented By

Referenced By