Aplicación de una arquitectura de red neuronal para el monitoreo de carga por métodos no invasivos (NILM) utilizando ciclos de activación de artefactos eléctricos en el entrenamiento
dc.coverage.spatial | Nacional | es_ES |
dc.creator | Cocconi, Diego Alejandro | |
dc.creator | Yuan, Rebeca | |
dc.creator | Mulassano, Micaela | |
dc.creator | Ferreyra, Diego M. | |
dc.date.accessioned | 2022-10-18T20:30:32Z | |
dc.date.available | 2022-10-18T20:30:32Z | |
dc.date.issued | 2019-04 | |
dc.description.abstract | Con el objetivo de lograr identificar artefactos eléctricos utilizando redes neuronales a partir de una medida total de consumo de energía (técnica conocida como NILM, del inglés Non-Intrusive Load Monitoring), en el presente trabajo se plantea la evaluación de dos tipos de redes neuronales capaces de realizar tal tarea, contando como ejemplos de entrenamiento válidos para el aprendizaje con ciclos de activación de diferentes artefactos que ya fueron identificados por un algoritmo de detención desarrollado en trabajos anteriores. | es_ES |
dc.description.affiliation | Fil: Cocconi, Diego Alejandro. Universidad Tecnológica Nacional. Facultad Regional San Francisco. Departamento de Ingeniería en Sistemas de Información / Electromecánica; Argentina. | es_ES |
dc.description.affiliation | Fil: Yuan, Rebeca. Universidad Tecnológica Nacional. Facultad Regional San Francisco. Departamento de Ingeniería en Sistemas de Información / Electromecánica; Argentina. | es_ES |
dc.description.affiliation | Fil: Mulassano, Micaela. Universidad Tecnológica Nacional. Facultad Regional San Francisco. Departamento de Ingeniería en Sistemas de Información / Electromecánica; Argentina. | es_ES |
dc.description.affiliation | Fil: Ferreyra, Diego M. Universidad Tecnológica Nacional. Facultad Regional San Francisco. Departamento de Ingeniería en Sistemas de Información / Electromecánica; Argentina. | es_ES |
dc.description.sponsorship | PID UTN CCUTNSF0004881 | es_ES |
dc.format | es_ES | |
dc.identifier.citation | XXI Workshop de Investigadores en Ciencias de la Computación | es_ES |
dc.identifier.isbn | 978-987-3984-85-3 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12272/7179 | |
dc.language.iso | spa | es_ES |
dc.publisher | Editorial UNSJ, 2019 | es_ES |
dc.relation.projectid | CCUTNSF0004881 | es_ES |
dc.rights | openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.use | . | es_ES |
dc.source | XXI Workshop de Investigadores en Ciencias de la Computación: 20-24. (2019) | es_ES |
dc.subject | NILM | es_ES |
dc.subject | Consumo de energía | es_ES |
dc.subject | Ciclos de activación | es_ES |
dc.subject | Aprendizaje automático | es_ES |
dc.subject | Redes neuronales | es_ES |
dc.title | Aplicación de una arquitectura de red neuronal para el monitoreo de carga por métodos no invasivos (NILM) utilizando ciclos de activación de artefactos eléctricos en el entrenamiento | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.type.version | publisherVersion | es_ES |
Files
Original bundle
1 - 1 of 1
- Name:
- 8. Aplicación de una arquitectura de red neuronal para el monitoreo.pdf
- Size:
- 234.37 KB
- Format:
- Adobe Portable Document Format
- Description:
- Artículo principal y único
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: