Fisher Vectors for PolSAR Image Classification

dc.coverage.spatialInternacionales_ES
dc.creatorRedolfi, Javier
dc.creatorSánchez, Jorge
dc.creatorFlesia, Ana Georgina
dc.date.accessioned2019-08-20T19:49:09Z
dc.date.available2019-08-20T19:49:09Z
dc.date.issued2018-09
dc.description.abstractIn this letter, we study the application of the Fisher vector (FV) to the problem of pixelwise supervised classification of polarimetric synthetic aperture radar images. This is a challenging problem since information in those images is encoded as complex-valued covariance matrices. We observe that the real parts of these matrices preserve the positive semidefiniteness property of their complex counterpart. Based on this observation, we derive an FV from a mixture of real Wishart densities and integrate it with a Potts-like energy model in order to capture spatial dependencies between neighboring regions. Experimental results on two challenging data sets show the effectiveness of the approach.es_ES
dc.description.affiliationFil: Redolfi, Javier (1); Sánchez, Jorge (2); Flesia, Ana Georgina (2) (1)CONICET and CIII, Universidad Tecnológica Nacional, Facultad Regional Córdoba, Córdoba, Argentina. (2) CIEM-CONICET and FaMAF, Universidad Nacional de Córdoba, Córdoba, Argentina.es_ES
dc.formatapplication/pdfes_ES
dc.identifier.citationRedolfi, J., Sánchez, J., & Flesia, A. G. Fisher vectors for PolSAR image classification. Congreso Argentino de AgroInformática. (2018)es_ES
dc.identifier.issn2525-0949
dc.identifier.urihttp://hdl.handle.net/20.500.12272/3889
dc.language.isoenges_ES
dc.publisherSADIOes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.rights.useAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.subjectFisher vectorses_ES
dc.subjectimage classificationes_ES
dc.subjectpolarimetric synthetic aperture radares_ES
dc.titleFisher Vectors for PolSAR Image Classificationes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.type.snrdinfo:ar-repo/semantics/documento de conferenciaes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2018_Fisher vectors for PolSAR image classification.pdf
Size:
90.75 KB
Format:
Adobe Portable Document Format
Description:
Artículo único y principal

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
5.73 KB
Format:
Item-specific license agreed upon to submission
Description: