Electrochemical performance comparison of MWCNTs Ni (OH)2 composite materials by two preparation routes

Abstract

Carbon materials are used to improve the nickel hydroxide electrode capacity in rechargeable alkaline batteries. Herein, we present the preparation of multiwall carbon nanotubes/nickel hydroxide composites (MWCNTs/Ni (OH)2) by two different routes. The first method consists of the direct incorporation of MWCNTs in the active material, and the second is based on the hydrothermal synthesis of β-nickel hydroxide, where MWCNTs are added to the precursor solutions. The electrochemical properties of the prepared positive electrodes containing MWCNTs/Ni (OH)2 composites are studied. Electrochemical results indicate that the active material with MWCNTs incorporated before the hydrothermal synthesis is capable of delivering a higher discharge capacity and exhibits a better reversibility than those composites prepared with MWCNTs after the hydrothermal route.

Description

Keywords

Nickel hydroxide, Carbon nanotubes, Positive electrode, Ni-MH batteries

Citation

Journal of Solid State Electrochemistry

Endorsement

Review

Supplemented By

Referenced By