Classifier algorithms for tuning multi-model soft sensors : application to the estimation of quality variables in a continuous industrial process
dc.creator | Perdomo, Mariano Miguel | |
dc.creator | Clementi, Luis Alberto | |
dc.creator | Sanseverinatti, Carlos Ignacio | |
dc.creator | Vega, Jorge Rubén | |
dc.creator.orcid | 0000-0003-3735-7778 | |
dc.creator.orcid | 0000-0001-6139-4742 | |
dc.creator.orcid | 0000-0003-4201-4067 | |
dc.creator.orcid | 0000-0002-6225-6293 | |
dc.date.accessioned | 2025-05-21T21:15:33Z | |
dc.date.issued | 2023 | |
dc.description.abstract | In this work, a multi-model soft sensor (SS) is proposed to estimate non-measurable variables in continuous processes. The proposed approach involves a first stage of clustering, using Gaussian mixture models, to identify the clusters that represent the multiple working conditions of the process. Then, for each identified cluster, multivariate linear regression sub-models are calibrated. Finally, the required non-measurable variable is estimated through a linear combination of the estimations from each sub-model. The weight coefficients for each sub-model are calculated using a classification algorithm. The performance of four different classification algorithms is evaluated in terms of the capability of their resulting multi-model soft sensor to estimate the mass conversion in a numerical simulation of a continuous emulsion polymerization for industrial production of Styrene-Butadiene Rubber. The results showed that the classifier model plays an important role in the multi-model soft sensor performance. Furthermore, a multi-model soft sensor that assigns the weights through Gaussian mixture models performs better than cases where a multi-layer perceptron, a linear discriminant analysis, or a K-nearest neighbors are used. | |
dc.description.affiliation | Fil: Perdomo, Mariano Miguel. CONICET-UNL. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Argentina. | |
dc.description.affiliation | Fil: Perdomo, Mariano Miguel. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina. | |
dc.description.affiliation | Fil: Clementi, Luis Alberto. CONICET-UNER. Instituto de Investigación en Bioingeniería y Bioinformática (IBB), Argentina. | |
dc.description.affiliation | Fil: Clementi, Luis A. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina. | |
dc.description.affiliation | Fil: Sanseverinatti, Carlos Ignacio. CONICET-UNL. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Argentina. | |
dc.description.affiliation | Fil: Sanseverinatti, Carlos Ignacio. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina. | |
dc.description.affiliation | Fil: Vega, Jorge Rubén. CONICET-UNL. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Argentina. | |
dc.description.affiliation | Fil: Vega, Jorge Rubén. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina. | |
dc.format | ||
dc.identifier.citation | Perdomo, M.M.; Clementi, L.A.; Sanseverinatti, C.I. & Vega, J.R. (4-8 de junio de 2023). Classifier algorithms for tuning multi-model soft sensors : application to the estimation of quality variables in a continuous industrial process. 11th World Congress of Chemical Engineering (WCCE11). Buenos Aires, Argentina. | |
dc.identifier.uri | https://hdl.handle.net/20.500.12272/13006 | |
dc.language.iso | en | |
dc.publisher | WCCE11 | |
dc.relation.projectid | ASECAFE0008414 | |
dc.relation.projectid | MODELADO Y MONITOREO DE PROCESOS INDUSTRIALES CONTINUOS Y SEMICONTINUOS. ALGORITMOS BASADOS EN INFERENCIA BAYESIANA Y APRENDIZAJE MAQUINAL | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | CC0 1.0 Universal | en |
dc.rights.holder | Los autores | |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights.use | CreativeCommons | |
dc.subject | Soft sensor | |
dc.subject | Multiple working conditions | |
dc.subject | Multi-model | |
dc.subject | Quality variable estimation | |
dc.title | Classifier algorithms for tuning multi-model soft sensors : application to the estimation of quality variables in a continuous industrial process | |
dc.type | info:eu-repo/semantics/conferenceObject | |
dc.type.version | acceptedVersion |