Classifier algorithms for tuning multi-model soft sensors : application to the estimation of quality variables in a continuous industrial process

dc.creatorPerdomo, Mariano Miguel
dc.creatorClementi, Luis Alberto
dc.creatorSanseverinatti, Carlos Ignacio
dc.creatorVega, Jorge Rubén
dc.creator.orcid0000-0003-3735-7778
dc.creator.orcid0000-0001-6139-4742
dc.creator.orcid0000-0003-4201-4067
dc.creator.orcid0000-0002-6225-6293
dc.date.accessioned2025-05-21T21:15:33Z
dc.date.issued2023
dc.description.abstractIn this work, a multi-model soft sensor (SS) is proposed to estimate non-measurable variables in continuous processes. The proposed approach involves a first stage of clustering, using Gaussian mixture models, to identify the clusters that represent the multiple working conditions of the process. Then, for each identified cluster, multivariate linear regression sub-models are calibrated. Finally, the required non-measurable variable is estimated through a linear combination of the estimations from each sub-model. The weight coefficients for each sub-model are calculated using a classification algorithm. The performance of four different classification algorithms is evaluated in terms of the capability of their resulting multi-model soft sensor to estimate the mass conversion in a numerical simulation of a continuous emulsion polymerization for industrial production of Styrene-Butadiene Rubber. The results showed that the classifier model plays an important role in the multi-model soft sensor performance. Furthermore, a multi-model soft sensor that assigns the weights through Gaussian mixture models performs better than cases where a multi-layer perceptron, a linear discriminant analysis, or a K-nearest neighbors are used.
dc.description.affiliationFil: Perdomo, Mariano Miguel. CONICET-UNL. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Argentina.
dc.description.affiliationFil: Perdomo, Mariano Miguel. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina.
dc.description.affiliationFil: Clementi, Luis Alberto. CONICET-UNER. Instituto de Investigación en Bioingeniería y Bioinformática (IBB), Argentina.
dc.description.affiliationFil: Clementi, Luis A. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina.
dc.description.affiliationFil: Sanseverinatti, Carlos Ignacio. CONICET-UNL. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Argentina.
dc.description.affiliationFil: Sanseverinatti, Carlos Ignacio. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina.
dc.description.affiliationFil: Vega, Jorge Rubén. CONICET-UNL. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Argentina.
dc.description.affiliationFil: Vega, Jorge Rubén. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación en Ingeniería Eléctrica y Sistemas Energéticos (CIESE); Argentina.
dc.formatpdf
dc.identifier.citationPerdomo, M.M.; Clementi, L.A.; Sanseverinatti, C.I. & Vega, J.R. (4-8 de junio de 2023). Classifier algorithms for tuning multi-model soft sensors : application to the estimation of quality variables in a continuous industrial process. 11th World Congress of Chemical Engineering (WCCE11). Buenos Aires, Argentina.
dc.identifier.urihttps://hdl.handle.net/20.500.12272/13006
dc.language.isoen
dc.publisherWCCE11
dc.relation.projectidASECAFE0008414
dc.relation.projectidMODELADO Y MONITOREO DE PROCESOS INDUSTRIALES CONTINUOS Y SEMICONTINUOS. ALGORITMOS BASADOS EN INFERENCIA BAYESIANA Y APRENDIZAJE MAQUINAL
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsCC0 1.0 Universalen
dc.rights.holderLos autores
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.rights.useCreativeCommons
dc.subjectSoft sensor
dc.subjectMultiple working conditions
dc.subjectMulti-model
dc.subjectQuality variable estimation
dc.titleClassifier algorithms for tuning multi-model soft sensors : application to the estimation of quality variables in a continuous industrial process
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versionacceptedVersion

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
WCCE11 - Perdomo y otros
Size:
568.27 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.63 KB
Format:
Item-specific license agreed upon to submission
Description: