Effect of Debaryomyces hansenii and the antifungal PgAFP protein on Alternaria spp. growth, toxin production, and RHO1 gene expression in a tomato-based medium
Date
2021-01-20
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
Tomato fruit is susceptible to Alternaria spp. spoilage, which poses a health risk due to their mycotoxin production. Biopreservation relies on the use of whole microorganisms or their metabolites to manage spoilage microorganisms including filamentous fungi. However, the use of treatments at fungistatic level might activate intracellular pathways, which can cause an increment in mycotoxin accumulation. The objective of this work was to evaluate the effect of two strains of Debaryomyces hansenii and the antifungal protein PgAFP at 10 and 40 μg/mL. Both growth and production of two of the most common mycotoxins (tenuazonic acid and alternariol monomethyl ether) by Alternaria tenuissima sp.-grp. and Alternaria arborescens sp.-grp. on a tomato-based matrix, were analysed at 12 °C. Additionally, the impact of these biocontrol agents on the stress-related RHO1 gene expression was assessed. All treatments reduced mycotoxin accumulation (from 27 to 92% of inhibition). Their mode of action against Alternaria spp. in tomato seems unrelated to damages to fungal cell wall integrity at the genomic level. Therefore, the two D. hansenii strains (CECT 10352 and CECT 10353) and the antifungal protein PgAFP at 10 μg/mL are suggested as biocontrol strategies in tomato fruit at postharvest stage.
Description
Keywords
Alternaria, Mycotoxin, Tomato fruit, Yeasts, Antifungal protein, Food safety
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as embargoedAccess