Browsing by Author "Gómez Costa, Marcos Bruno"
Now showing 1 - 20 of 35
- Results Per Page
- Sort Options
Item Activated carbons synthetized from orange peel to produce clean energy(2022) Rivoira, Lorena Paola; Gómez Costa, Marcos Bruno; Ledesma, Brenda Cecilia; Beltramone, Andrea RaquelAs we all know, a clean energy revolution is taking place all over the world in pursuit of replacing oil. The present work stands out an environmental point of view by proposing biomass wastes from different industrial areas to produce not only a biofuel but also as raw material to synthetize the catalyst involved in the HDO reaction. In this way the process ceases to rely on the antiquated and obsolete linear economy where products, services, wastes, materials, water and energy have a beginning and an end to become a process with greater tendency to the modern circular economy, closely related to the idea of sustainability. Products, materials and resources are expected to last as long as possible while minimizing waste as much as possible too. Agricultural and forestry waste are available everywhere being a low cost raw material and it is possible to provide added value to the organic wastes of small and medium size enterprises. The hydrodeoxygenation (HDO) of guaiacol has been performed in a batch reactor under 12 atm of H2 and different temperatures over activated carbon synthetized from orange peel discarded from juice industry. Carbon activation was carried out through a chemical process with phosphoric acid as an activating agent, varying the acid concentration, the ratio substrate/activating agent and time of contact between them. The best support was obtained using carbonization time of 1 h, temperature of carbonization of 470oC, phosphoric acid concentration of 50 wt.% and with BET area of 1429 m2/g. Subsequently, the metallic nanoparticles were deposited in the activated carbon to use the solid as a catalytic material for the hydrodeoxygenation of guaiacol. The catalytic material was modified with metallic nanoparticles of Pt. The catalysts were characterized by means of X-ray diffraction, N2 isotherms, XPS, SEM and TEM. Good structure, narrow pore size distribution and high platinum dispersion were achieved in the synthesized catalysts. The objective of this investigation is the evaluation of the catalytic activity and to compare it with SBA-15 support studied previously. The catalyst presented excellent performance for biofuels generation.Item Biomass wastes as a raw material for mesoporous catalyst applied in HDO of guaiacol(2022) Rivoira, Lorena Paola; Ledesma, Brenda Cecilia; Gómez Costa, Marcos Bruno; Beltramone, Andrea RaquelAs we all know, a clean energy revolution is taking place all over the world in pursuit of replacing oil. The present work stands out an environmental point of view by proposing biomass wastes different industrial areas to produce not only a biofuel but also as raw material to synthetize the catalyst involved in the HDO reaction. In this way the process ceases to rely on the antiquated and obsolete linear economy where products, services, wastes, materials, water and energy have a beginning and an end to become a process with greater tendency to the modern circular economy, closely related to the idea of sustainability. Products, materials and resources are expected to last as long as possible while minimizing waste as much as possible too. Agricultural and forestry waste are available everywhere being a low cost raw material and it is possible to provide added value to the organic wastes of small and medium size enterprises. The hydrodeoxygenation (HDO) of guaiacol has been performed in a batch reactor under 12 atm of H2 and different temperatures over activated carbon synthetized orange peel discarded juice industry. Carbon activation was carried out through a chemical process with phosphoric acid as an activating agent, varying the acid concentration, the ratio substrate/activating agent and time of contact between them. The best support was obtained using carbonization time of 1 h, temperature of carbonization of 470oC, phosphoric acid concentration of 50 wt.% and with BET area of 1429 m2/g. Subsequently, the metallic nanoparticles were deposited in the activated carbon to use the solid as a catalytic material for the hydrodeoxygenation of guaiacol. The catalytic material was modified with metallic nanoparticles of Pt. The catalysts were characterized by means of X-ray diffraction, N2 isotherms, XPS, SEM and TEM. Good structure, narrow pore size distribution and high platinum dispersion were achieved in the synthesized catalysts. The objective of this investigation is the evaluation of the catalytic activity and to compare it with SBA-15 support studied previously. The catalyst presented excellent performance for biofuels generation.Item Controlled drug release system: cyclophosphamide delivery contained in LP-SBA-15 functionalized with tertbutylamine.(Univesidsad Tecnológica Nacional, 2023) Cussa, Jorgelina; Juárez , Juliana María; Gómez Costa, Marcos Bruno; Anunziata, Oscar Alfredo; Anunziata, Oscar Alfredo; Juárez , Juliana MaríaControlled drug administration systems can keep the level of drugs in specific locations in the organism with low toxicity and above the optimal level. We suggest the LP-SBA15 material as a auspicious new host for drug delivery systems because of its low toxicity high biocompatibility and in vivo biodegradability. LP-SBA-15 materials were synthesized and functionalized using 0-15-30% of tert-butylamine (TBA) and used as effective drug delivery systems. The anticancer drug Cyclophosphamide (CP) is an alkylating compound which is a phosphoramide derivative and is habitually used in autoimmune diseases. Reactive oxygen species production has been related to the mechanism of CP-induced cell death or tumor cell killing. The activated metabolites of CP are released in both healthy and tumor tissues and destroy the cellular DNA and proteins as well as mitochondrial and lysosomal membranes. CP was loaded into the nanomaterial of the transporters and characterized by XRD, FTIR, TGA, TEM and texture, determining the adsorption capacity and its release. The release of the drug was studied for each material by simulating the physiological conditions and submerging the composite, at 37 °C with constant stirring, in a HCl solution (0.1 M) for the first two hours and in Buffer solution pH = 7 the following hours to simulate the conditions of the organism. Release experiment were conducted to determine the requisite efficacy of treatment. The study was performed by UV-Vis spectrophotometry to evaluate the amount of CP released. The mechanism of drug release from the LP-SBA-15 matrix was evaluated by adjusting the experimental data, being the Ritger-Peppas. The promising results we obtained for the controlled release of the drug in a controlled manner using the new material, reaching a quick initial release rate and maintaining a constant rate at high moments, allow us to keep the concentration of the drug in the therapeutic efficacy range, applying it to a great extent to the treatment of diseases that require a rapid response. Lastly, it was suggested that the LP-SBA-15 nanomaterial functionalized with 15% TBA was the most desirable system due to they had adequate amounts of both drug loading and release.Item Controlled drug release system: MCF-Chlorambucil mesoporous foam.(Univesidsad Tecnológica Nacional, 2022) Júarez , Juliana María; Cussa , Jorgelina; Anunziata, Oscar Alfredo; Gómez Costa, Marcos Bruno; Anunziata, Oscar AlfredoMesostructured cellular foam (MCF) is a promising material for drug delivery systems due to its high biocompatibi0lity, biodegradability, and low toxicity. Its properties include a large surface area, uniform large pore. In this work, the MCF mesoporous foam was successfully synthesized for its application in drug nanocarriers, specifically Chlorambucil, obtaining the MCF-CLB composite. The synthesis of the mesoporous material and the process of incorporation of Chlorambucil in the pores of the MCF were successful as shown in the XRD, UV Vis Ref. Difusa, TEM analysis and analysis of textural properties. The release of the drug was conducted by simulating the physiological conditions to reproduce the conditions of the organism. The mechanism of drug release from the MCF-CLB host was evaluated. Different mathematical models were used to adjust the experimental data, the best model describing the phenomenon under study over the entire period is the Weibull model. The auspicious results we attained for the release of the drug using the new material, the main advantage of this release is that the rate of release is fast at the beginning and then gradually decreases until 24 h practically all the drug contained in the carrier is released (>95%).Item Drug delivery system: large pore SBA-15 as host for ketorolac tromethamine(2022) Juárez, Juliana María; Cussa, Jorgelina; Anunziata, Oscar Alfredo; Gómez Costa, Marcos BrunoDrug-controlled release systems can keep the level of drugs in precise doses in the body above the optimal level and with low toxicity. We propose the LP-SBA-15 nanomaterial as a promising new host for drug delivery systems because of its high biocompatibility, in vivo biodegradability, and low toxicity. Ketorolac-LP-SBA-15 was prepared and characterized by XRD, FTIR, UV-Vis DRS, TEM, and texture analysis, determining the adsorption capacity and its release, achieving the required therapeutic efficacy. The host shows ordered mesoporous nanochannels with a diameter of 11-12 nm, maintaining the structure with the incorporation of Keto. The mechanism of drug release the LP-SBA-15 host was evaluated. Different mathematical models were used to adjust the experimental data, being the Ritger-Peppas model followed by the Weibull model the best ones. In this work, we show a promising drug storage material for effective encapsulation and controlled release of KETO, achieving the required therapeutic efficacy. Studies indicate that KETO was adsorbed on the channel surface of LP-SBA-15 without affecting the structure or chemical composition of KETO. Controlled drug delivery systems can achieve precise delivery at the time and place of destination, keeping the concentration of the drug at points in the body within the optimal range and below the toxicity threshold. The study also demonstrates the storage capacity and release properties of LPSBA-15 containing KETO. The release of KETO contained in LP-SBA-15 can offer a significant improvement in the controlled release of the drug and the analgesic and anti-inflammatory effects, positively influenced, by the links formed between the host and drug molecules and by diffusion through the host porosity. The promising results we obtained for the release of the drug thoroughly using the new material, reaching a rapid initial release rate, and maintaining a constant rate afterward, allow us to maintain the concentration of the drug in the therapeutic efficacy range, applying it largely to the treatment of diseases that require a rapid response.Item Drug release system: Chlorambucil loaded in mesoporous cellular foam (MCF)(2022) Juárez, Juliana María; Anunziata, Oscar Alfredo; Gómez Costa, Marcos BrunoNanotransporters have received a great deal of research attention because of their promising opportunities in drug delivery [1-5]. Attempting to minimize the secondary adverse events of anticancer drugs and enhance the therapeutic rate, various nanotransporters have been devised, including dendrimers [6, 7], liposomes [8, 9], inorganic nanoparticles, and polymeric nanoparticles [10-13]. Chlorambucil (CLB), is a substance classified as a human carcinogen [14], it is used as a chemotherapy drug administered for treating some types of cancer. It is mainly used to treat chronic lymphocytic leukemia, low-grade nonHodgkin's lymphoma, Hodgkin's lymphoma and ovarian cancer. Chemically, it is 4-[4-bis(2-chloroethyl) amino phenyl butyric acid. MCFs (mesostructured siliceous cellular foams), that can be derived after the inclusion of a bulking medium in the synthesis procedure of SBA-15 [4], are composed of spherically uniform cells 15-50 nm diameter [15], exhibit high surface areas and porosities, and have adjustable pore size distributions [15, 16]. The open large pore system gives MCF unique advantages as catalyst support and separation media for processes involving large molecules. In addition to their specific physicochemical properties, they possess high biocompatibility and low adverse effects, which with their biodegradability, making them attractive for controlled drug release applications.Item Estudio de la influencia de la temperatura de síntesis y la concentración de surfactante en la síntesis de SBA-3(2014) Ponte, María Virginia; Martínez, María Laura; Gómez Costa, Marcos Bruno; Anunziata, Oscar Alfredo; Beltramone, Andrea RaquelEn este trabajo se presentan resultados de preparación y caracterización de SBA-3, estudiando la variación de la temperatura de síntesis, así como la de la relación molar CTAB/TEOS. Condiciones de síntesis suaves (303 K) y adecuadas relaciones de surfactante/precursor de silicio conducen a un material mesoporoso con un ordenamiento regular hexagonal, característico de SBA-3 con elevada regularidad estructural.Item H2 storage using Zr-CMK-3 developed by a new synthesis method(2021) Juárez, Juliana María; Venosta, Lisandro F.; Anunziata, Oscar Alfredo; Gómez Costa, Marcos BrunoOne of the biggest problems in using hydrogen as an alternative fuel is that its storage must be safe and portable. This work addresses a new direct synthesis technique used to obtain a novel mesoporous carbon (CMK-3) modified with zirconium oxide. This novel material shows promise for hydrogen adsorption and storage application for energy harvesting. Zirconium oxide (Zr-CMK-3) material is achieved through successful synthesis and characterized by XRD, SEM, Raman, BET, UV-Vis-DRS, XPS and TEM analyses. Zr-CMK-3 signifi- cantly improved H2 storage performance (reaching at 77 K and 10 bar 4.6 wt%) compared to the pristine CMK-3. The novel material is favorable for H2 uptake by using weak bonding (physisorption). A hydrogen uptake mechanistic approach is proposed and the role of the Zr+4 cation in hydrogen adsorption is discussed.Item Hydrodenitrogenation of indol using iridium catalyst supported on titanium nanotubes(2022) Ledesma, Brenda Cecilia; Martínez, María Laura; Gómez Costa, Marcos Bruno; Beltramone, Andrea RaquelThe HDN of indole was studied over iridium modified titanate nanotube catalyst. Titaniun nanotube was prepared by the alkaline hydrothermal method. Iridium was added by wetness impregnation. The activity was compared with Ir-TiO2 and commercial NiMo/Al2O3 catalysts. The catalysts prepared were characterized by X-ray diffraction (XRD), N2 adsorption isotherms, UV–Vis-DRS, XPS, TEM, Py- FTIR and H2-Chemisorption. XRD, N2 isotherms and UV–vis-DRS confirmed the nanotube structure. The analysis showed that the mesoporous structure was maintained after Ir incorporation. The results showed that titanate nanotube as support significantly reduce the size of iridium crystallites and improves its dispersion considerably. Iridium titanate nanotube presented abundant and strong Bronsted acidity compared with TiO2 iridium catalyst. Ir-TNT was the most active catalyst for indole HDN, in mild conditions in a Batch reactor. The Bronsted acidity in synergic effect with Lewis acidity and hydrogenolysis capacity of iridium species were the responsible for the good activity.The HDN of indole was studied over iridium modified titanate nanotube catalyst. Titaniun nanotube was prepared by the alkaline hydrothermal method. Iridium was added by wetness impregnation. The activity was compared with Ir-TiO2 and commercial NiMo/Al2O3 catalysts. The catalysts prepared were characterized by X-ray diffraction (XRD), N2 adsorption isotherms, UV–Vis-DRS, XPS, TEM, Py- FTIR and H2-Chemisorption. XRD, N2 isotherms and UV–vis-DRS confirmed the nanotube structure. The analysis showed that the mesoporous structure was maintained after Ir incorporation. The results showed that titanate nanotube as support significantly reduce the size of iridium crystallites and improves its dispersion considerably. Iridium titanate nanotube presented abundant and strong Bronsted acidity compared with TiO2 iridium catalyst. Ir-TNT was the most active catalyst for indole HDN, in mild conditions in a Batch reactor. The Bronsted acidity in synergic effect with Lewis acidity and hydrogenolysis capacity of iridium species were the responsible for the good activity.Item Hydrogenation of tetralin over Ir-containing mesoporous catalysts(2012) Vallés, Verónica; Balangero, Gerardo Simón; Martínez, María Laura; Gómez Costa, Marcos Bruno; Anunziata, Oscar Alfredo; Beltramone, Andrea RaquelThe yield in fluid catalytic cracking (FCC) depends on the extent of aromatic hydrogenation in the gas oil hydrotreater. To optimize the gas oil hydrotreater, it is crucial to understand the aromatic hydrogenation reaction chemistry occurring in the gas oil hydrotreater. Gas oils, which consist of hydrocarbons in the boiling point range of 290−570 °C, contain several aromatic compounds (including three rings, two rings, and one ring). Light cycle oil (LCO), which contains large concentrations of aromatics, has a poor cetane value and, hence, by itself, is a very poor-quality diesel. Because the current regulations [on cetane and polynuclear aromatic (PNA) hydrocarbons] are not stringent, LCO is currently blended with diesel. However, it is anticipated (based on existing regulations in Europe and California) that diesel quality in the near future will be more stringently regulated in terms of cetane and aromatics. To find alternative processes, it is necessary to develop new and more active catalysts to replace the current ones. Optimal design and operation of such hydrogenation processes can be achieved through the use of reliable simulation tools; however, such tools require detailed knowledge of kinetic pathways and rates.1−3 Kinetic experiments on hydrogenation are typically performed in the gas phase under atmospheric pressure on group VIII metal catalysts. Previously, Beltramone et al.4,5 reported a detailed study and a quantitative network analysis of polynuclear aromatics aromatization at industrial conditions, and Korre and Klein6 reported an exhaustive study in a batch reactor at high pressure. Otherwise, the sulfur and nitrogen compounds found in synthetic feedstocks and heavy petroleum fractions can strongly inhibit hydroprocessing reactions through competitive adsorp- tion. The presence of these species even at low concentrations can limit the observed catalytic activity and necessitate the use Article Current processes for dearomatization use catalysts combin- ing the acidity of a support and the hydrogenation and hydrogenolysis/ring-opening activity of an incorporated metal. Hydrogenation/hydrocracking is most often practiced on cyclic molecules over primarily acidic zeolite, alumina, or silica- alumina-supported noble and other group VIII metal catalysts. Different processes have used catalysts such as NiMo, CoMo, NiW, Pt, and Pd on various supports.7−17 The dominance of the acid function can lead to cracking, and thus, a primary focus is the optimization of the acid function. In fact, it was shown recently that significant enhancements in hydrogenation can be made by focusing on the metal function. The metal function is usually provided by Pt and/or Pd, but it has been shown that Ir, Ru, and Rh also have exceptional activities and selectivities for the target reaction of hydrogenation and, depending on the reaction conditions, selective ring-opening.18−20 Some alumina- supported transition-metal catalysts have much higher hydro- denitrogenation (HDN) and hydrodesulfurization (HDS) activities than the conventional NiMo system.21−25 For example, Rh, Ir, Ru, and Pt supported on silica or alumina are known to effectively catalyze nitrogen removal from methylamine, quinoline, or pyridine also in the reduced state.26 Noble-metal sulfides, either unsupported as bulk compounds27 or supported on active carbon,28 have been studied extensively in hydrorefining. It has been shown that transition-metal sulfides of the second and third rows such as those containing Ru, Rh, Os, and Ir are especially active during HDS reactions.27 Similarly, sulfides of Ir, Os, and Re were found to be most active in the HDN of quinoline,28 and sulfides of Ir and Pt were found to be most active in the HDN of pyridine.29 However, catalytic properties of metal deposited on alumina or other supports have been studied less frequently, and moreover, the primary attention to date has been devoted only to Ru.30 It was shown by Cinibulk and Vit́31 that the HDN of higher pressures and temperatures to obtain desired conversions. Therefore, the need for more active catalysts is crucial in this process. The development of highly active and selective hydrotreating catalysts is one of the most pressing problems facing the petroleum induItem Indole HDN using iridium nanoparticles supported on titanium nanotubes(2022) Ledesma, Brenda Cecilia; Martínez, María Laura; Gómez Costa, Marcos Bruno; Beltramone, Andrea RaquelThe HDN of indole was studied over iridium modified titanate nanotube catalyst. Titanium nanotube was prepared by the alkaline hydrothermal method. Iridium was added by wetness impregnation. The activity was compared with Ir–TiO2 and commercial NiMo/Al2O3 catalysts. The catalysts prepared were characterized by X-ray diffraction (XRD), N2 adsorption isotherms, UV–Vis-DRS, FTIR, XPS, TEM, Py-FTIR and H2-Chemisorption. XRD, N2 isotherms and UV–vis-DRS con- firmed the nanotube structure. The analysis showed that the mesoporous structure was maintained after Ir incorporation. The results showed that titanate nanotube as support significantly reduce the size of iridium crystallites and improves its dispersion considerably. Iridium titanate nanotube presented abundant and strong Brönsted acidity compared with TiO2 iridium catalyst. According a kinetic study, Ir–TNT was the most active catalyst for indole HDN, in mild conditions in a Batch reactor. The Brönsted acidity in synergic effect with Lewis acidity and hydrogenolysis capacity of iridium species were the responsible for the good activity.Item Inhibition of the hydrogenation of tetralin by nitrogen and sulfur compounds over Ir/SBA-16(2011) Balangero, Gerardo Simón; Martínez, María Laura; Gómez Costa, Marcos Bruno; Anunziata, Oscar Alfredo; Beltramone, Andrea RaquelIn this work we study the catalytic properties of 5 wt.% Ir-containing SBA-16 catalysts (with and without aluminum as heteroatom), in the hydrogenation of tetralin to decalin, in the presence of 100 ppm of N as quinoline, indole and carbazole, and 100 ppm of S as dibenzothiophene and 4,6-dimethyl- dibenzothiophene at 250 ◦C and 15 atm of pressure of hydrogen, using a Parr reactor. Ir/SBA-16 and Ir/Al-SBA-16 were prepared by wetness impregnation using Iridium Acetylacetonate as source of Ir. The Ir/SBA-16 catalyst synthesized by us had high activity measured in tetralin hydrogenation at mild con- ditions. The experimental data was quantitatively represented by a modified Langmuir–Hinshelwood type rate equation, using the apparent adsorption constants calculated from the inhibition results for the individual compounds. The catalyst showed a good resistance to sulfur and nitrogen compounds. The inhibiting effect increased in the order: DBT < quinoline < 4,6-dimethyl-DBT < indole < carbazole. The inhibiting effect of the nitrogen/sulfur compounds was strong, but the activity was still higher than with commercial NiMo/alumina catalyst. We present in this contribution a successfully developed, high loaded and well dispersed Ir/SBA-16 catalysts, that have been shown to maintain a useful catalytic activity, even in the presence of relatively high amounts of sulfur compounds (up to 100 ppm, sulfur basis). Consequently, economically successful processes have evolved, based on this class of catalysts.Item Large pore SBA-15 functionalized as drug carrier of Cyclophosphamide.(Univesidsad Tecnológica Nacional, 2023) Juárez , Juliana María; Cussa, Jorgelina; Anunziata, Oscar Alfredo; Gómez Costa, Marcos BrunoControlled drug administration systems can keep the level of drugs in specific locations in the organism with low toxicity and above the optimal level. We suggest the LP-SBA-15 material as an auspicious new host for drug delivery systems because of its low toxicity high biocompatibility and in vivo biodegradability. LP-SBA-15 materials were synthesized and functionalized using 0-15-30% of tert-butylamine (TBA) and used as effective drug delivery systems. The anticancer drug Cyclophosphamide (CP) is an alkylating compound which is a phosphoramide derivative and is habitually used in autoimmune diseases. Reactive oxygen species production has been related to the mechanism of CP-induced cell death or tumor cell killing. The activated metabolites of CP are released in both healthy and tumor tissues and destroy the cellular DNA and proteins as well as mitochondrial and lysosomal membranes. CP was loaded into the nanomaterial of the transporters and characterized by N2 adsorption-desorption, Ultraviolet-visible diffusereflectance spectroscopy (UV-Vis DRS), FTIR, determining the adsorption capacity and its release. The release of the drug was studied for each material by simulating the physiological conditions and submerging the composite, at 37 °C with constant stirring, in a HCl solution (0.1 M) for the first two hours and in Buffer solution pH = 7 the following hours to simulate the conditions of the organism. Release experiments were conducted to determine the requisite efficacy of treatment. The study was performed by UV-Vis spectrophotometry to evaluate the amount of CP released. The mechanism of drug release from the LP-SBA-15 functionalized matrix was evaluated by adjusting the experimental data, being the Ritger-Peppas model, Weibull model and First-Order model, the best models to adjust the experimental data is the, which is confirmed by the R2 coefficient of determination. The promising results we obtained for the controlled release of the drug in a controlled manner using the new material, reaching a quick initial release rate and maintaining a constant rate at high moments, allow us to keep the concentration of the drug in the therapeutic efficacy range, applying itto a great extent to the treatment of diseases that require a rapid response. Lastly, it was suggested thatthe LP SBA-15 nanomaterial functionalized with 15% TBA was the most desirable system due to they had adequate amounts of both drug loading and releaseItem LP-SBA-15/ketorolac nanocomposite: development, characterization, and mathematical modeling of controlled keto release(2022) Cussa, Jorgelina; Juárez, Juliana María; Gómez Costa, Marcos Bruno; Anunziata, Oscar AlfredoDrug-controlled release systems can keep the level of drugs in precise doses in the body above the optimal level and with low toxicity. We propose the nanomaterial LP-SBA-15 as an attractive new host for drug delivery systems due to its high biocompatibility, in vivo biodegradability, and low toxicity. LP-SBA-15/Ketorolac was prepared and characterized by XRD, FTIR, UV-Vis DRS, TEM, and texture analysis, determining the adsorption capacity and its release and achieving the required therapeutic efficacy. The host shows the ordered mesoporous nanochannels with a diameter of 11-12 nm, maintaining the structure with the incorporation of Keto. The mechanism of drug release from the LP-SBA-15 host was evaluated. Different mathematical models were used to adjust the experimental data, the Ritger-Peppas model followed by the Weibull model the best ones. The promising results we obtained for the release of the drug thoroughly using the new material, reaching a rapid initial release rate, and maintaining a constant rate afterward, allow us to maintain the concentration of the drug in the therapeutic efficacy range, applying it largely to the treatment of diseases that require a rapid response.Item LP-SBA-15/Ketorolac Nanocomposite: Development, Characterization, and Mathematical Modeling of Controlled Keto Release.(Univesidsad Tecnológica Nacional, 2023) Cussa, jorgelina; Juárez , Juliana María; Gómez Costa, Marcos Bruno; Anunziata, Oscar AlfredoDrug-controlled release systems can keep the level of drugs in precise doses in the body above the optimal level and with low toxicity. We propose the nanomaterial LP-SBA-15 as an attractive new host for drug delivery systems due to its high biocompatibility, in vivo biodegradability, and low toxicity. LP-SBA-15/Ketorolac was prepared and characterized by XRD, FTIR, UV-Vis DRS, TEM, and texture analysis, determining the adsorption capacity and its release and achieving the required therapeutic efficacy. The host shows the ordered mesoporous nanochannels with a diameter of 11-12 nm, maintaining the structure with the incorporation of Keto. The mechanism of drug release from the LP-SBA-15 host was evaluated. Different mathematical models were used to adjust the experimental data, the Ritger-Peppas model followed by the Weibull model the best ones. The promising results we obtained for the release of the drug thoroughly using the new material, reaching a rapid initial release rate, and maintaining a constant rate afterward, allow us to maintain the concentration of the drug in the therapeutic efficacy range, applying it largely to the treatment of diseases that require a rapid response.Item Mesoporous Cellular Foam (MCF): an efcient and biocompatible nanomaterial for the controlled release of Chlorambucil.(Univesidsad Tecnológica Nacional, 2022) Juárez , Juliana María; Cussa , jorgelina; Gómez Costa, Marcos BrunoNanotransporters have entered a great deal of exploration attention because of their promising openings in medicine delivery. We propose in this work, the Mesostructured siliceous cellular (MCFs) nanomaterial as a promising new hostfor drug delivery systems because both their specific physicochemical properties, in addition to the high biocompatibility, biodegradability, and low toxicity, make them seductive for controlled medicine release operations. Chlorambucil, is used as a chemotherapy drug administered for treating some types of cancer, chronic lymphocytic leukemia, low-grade non Hodgkin’s lymphoma, Hodgkin’s lymphoma and ovarian cancer. Chlorambucil-loaded Mesostructured cellular foam (MCF-CLB) was prepared and characterized by XRD, TEM, UV Vis DRS, FTIR, and texture analysis determining the adsorption capacity and its release, achieving the required therapeutic efficacy. The release of the drug was conducted by simulating the physiological conditions to reproduce the conditions of the organism. The mechanism of drug release from the MCF-CLB host was evaluated. Different mathematical models were used to adjust the experimental data, the best model describing the phenomenon under study over the entire period is the Weibull model. The auspicious results we attained for the release of the drug using the new material. The main advantage of this release is that the rate of release is fast at the beginning and then gradually decreases until 24 h practically all the drug contained in the carrier is released (>95%).Item Mesoporous cellular foam (MCF): an efficient and biocompatible nanomaterial for the controlled release of chlorambucil(2022) Juárez, Juliana María; Cussa, Jorgelina; Anunziata, Oscar Alfredo; Gómez Costa, Marcos BrunoNanotransporters have entered a great deal of exploration attention because of their promising openings in medicine delivery. We propose in this work, the Mesostructured siliceous cellular (MCFs) nanomaterial as a promising new host for drug delivery systems because both their specific physicochemical properties, in addition to the high biocompatibility, biodegradability, and low toxicity, make them seductive for controlled medicine release operations. Chlorambucil, is used as a chemotherapy drug administered for treating some types of cancer, chronic lymphocytic leukemia, low-grade non- Hodgkin’s lymphoma, Hodgkin’s lymphoma and ovarian cancer. Chlorambucil-loaded Mesostructured cellular foam (MCF-CLB) was prepared and characterized by XRD, TEM, UV- Vis DRS, FTIR, and texture analysis determining the adsorption capacity and its release, achieving the required therapeutic efficacy. The release of the drug was conducted by simulating the physiological conditions to reproduce the conditions of the organism. The mechanism of drug release from the MCF-CLB host was evaluated. Different mathematical models were used to adjust the experimental data, the best model describing the phenomenon under study over the entire period is the Weibull model. The auspicious results we attained for the release of the drug using the new material. The main advantage of this release is that the rate of release is fast at the beginning and then gradually decreases until 24 h practically all the drug contained in the carrier is released (> 95%).Item Nanoscopic hydrogen reservoir orange peel biowaste(2022) Juárez, Juliana María; Ledesma, Brenda Cecilia; Anunziata, Oscar A.; Gómez Costa, Marcos Bruno; Beltramone, Andrea RaquelThis work addresses the bio-waste valorization approach for the development of a novel carbonaceous nanomaterial to be used in the adsorption of hydrogen as an alternative in the use of green hydrogen. In this research, activated carbons were synthesized orange peel using different synthesis conditions. With the activated carbons obtained with the best structure and texture, the adsorption of hydrogen and the effects on their meso / microporosity were studied. The activation of the carbon was carried out by means of a chemical process with phosphoric acid as activating agent, varying the acid concentration, the substrate / activating agent ratio, and the contact time between them. The best support was obtained using a carbonization time of 1 h, a carbonization temperature of 470oC, a phosphoric acid concentration of 50% by weight and a BET area of ??1402 m2 / g. Said material significantly improved H2 storage behaviour compared to CMK-3 type nanostructured carbon (3.1% by weight at -196,15 oC and 10 bar). The synthesized material shows promise in absorbing hydrogen by weak binding forces (physisorption).Item Nanostructured ketorolac-tromethamine/MCF: synthesis, characterization and application in drug release system(Current Nanoscience, 2018) Juárez, Juliana María; Cussa, Jorgeliba; Gómez Costa, Marcos Bruno; Anunziata, Oscar AlfredoControlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured cellular foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity.Item Nanostructured SBA-15 host applied in ketorolac tromethamine release system(Springer Science+Business Media, 2017) Cussa, Jorgelina; Juárez, Juliana María; Gómez Costa, Marcos Bruno; Anunziata, Oscar AlfrecoThe ordered mesoporous silica SBA-15 has been applied in studies of ketorolac tromethamine adsorption andrelease. The SBA 15 materials with hexagonal and regular structure were obtained using a triblock copolymer Pluronic P123 as a template and TEOS as a silica source. Ketorolac tromethamine was adsorbed into SBA 15 silica nanochan- nels using ethanol as solvent. The physicochemical and textural properties of SBA-15 and ketorolac tromethamine/ SBA-15 were characterized by X-ray diffraction, thermo gravimetric analysis, transmission electron microscopy, fourier transform infrared spectroscopy and BET surface studies. Drug release was evaluated by soaking the loaded silica mesoporous material into a solution of HCl (0.1 N) at initial time (0–2 h) and buffer pH 7 at high times at 37 °C under continuous stirring. Oral commercial Keto tablets (Dolten® ) and Keto solution (Keto power) were study for the contrast. Release studies were performed in order to evaluate the required therapeutic efficacy. SBA 15 provides significant improvement in the controlled release of ketor- olac tromethamine.