Towards to a predictive model of academic performance using data mining in the UTN-FRRe
Fecha
2016-05-02Autor
La Red Martínez, David Luis
Karanik, Marcelo
Giovaninni, Mirta Eve
Scappini, Reinaldo
Metadatos
Mostrar el registro completo del ítemResumen
Students completing the courses required to become an Engineer in Information Systems in the Resistencia Regional Faculty, National Technological University, Argentine (UTN-FRRe), face the challenge
of attending classes and fulfilling course regularization requirements, often for correlative courses. Such is the case of freshmen's course Algorithms and Data Structures: it must be regularized in order to be able to attend several second and third year courses. Based on the results of the project entitled “Profiling of students and academic performance through the use of data mining”, 25/L059 - UTI1719, implemented in the aforementioned course (in 2013-2015), a new project has started, aimed to take the descriptive
analysis (what happened) as a starting point, and use advanced analytics, trying to explain the why, the what will happen, and how we can address it. Different data mining tools will be used for the study:
clustering, neural networks, Bayesian networks, decision trees, regression and time series, etc. These tools allow different
El ítem tiene asociados los siguientes ficheros de licencia: