Determinación de perfiles de rendimiento académico en la UTN - FRRe
Fecha
2015-11-19Autor
La Red Martínez, David Luis
Giovaninni, Mirta Eve
Pinto, Noelia
Frisone, Noelia
Báez, María Eugenia
Metadatos
Mostrar el registro completo del ítemResumen
El rendimiento académico es un factor crítico en toda institución educativa debido a que se encuentra directa-mente relacionado con la deserción estudiantil. Es decir, el bajo rendimiento está asociado a una alta tasa de de-serción. Por este motivo es altamente deseable poder definir perfiles de estudiantes que puedan ayudar a esta-blecer patrones de rendimiento que conduzcan al éxito o fracaso académico. Con el avance de las tecnologías de la información, han aparecido técnicas y metodologías que permiten el análisis de grandes volúmenes de datos para explicar sus patrones de comportamiento, evolución y singularidades. Estas herramientas utilizan almacenes de datos (Data Warehouses) y minería de datos (Data Mining) para encontrar relaciones no evidentes entre los datos.
En este artículo se describe un modelo basado en Da-ta Warehousing y Data Mining para determinar los per-files de rendimiento académico en la asignatura Algorit-mos y Estructura de Datos de la carrera Ingeniería en Sistemas de Información de la Universidad Tecnológica Nacional-Facultad Regional Resistencia (UTN-FRRe), con el objetivo de caracterizar los perfiles de estudiantes con un alto y bajo rendimiento académico. La importan-cia de la determinación de estos perfiles radica en que permiten definir acciones concretas para revertir el bajo desempeño académico. Finalmente, en este trabajo se muestran los resultados del análisis realizado con alum-nos que han cursado la asignatura Algoritmos y Estruc-turas de Datos durante el ciclo lectivo 2014, comparán-dolos con los resultados obtenidos durante el ciclo lecti-vo 2013
El ítem tiene asociados los siguientes ficheros de licencia: