Novel omc by nanocasting strategy for hydrogen adsorption

Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

A silica material of the SBA-15 type with ultra-large pores (20 nm) was synthesized by the sol-gel method. This silica mesoporous material was impregnated twice consecutively with an acid solution of sucrose and the organic material carbonised inside the mesopores. After dissolution of the silica framework, an ordered mesoporous carbon (OMC) with regular mesopores with mean diameter in the range of 6 nm. The specific surface area of the carbon was increased by increasing filling of the silica pores with the organic material, from 350 m2/g to 950 m2/g. The novel OMC material was successfully synthesized and characterized by X-ray diffraction, textural properties, SEM and transmission electron microscopy analyses. This novel OMC improved significantly the H2 storage behaviour (2.62 wt% at 77 K and 10 bar) compared with a similar CMK-3 (2.18 wt% at 77K and 10 bar). The synthesized material is promising for hydrogen uptake by means of weak bonding (physisorption).

Description

Keywords

OMC, Nanocasting, Hydrogen, Energy

Citation

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as openAccess