Modelado para la predicción de enfermedades en cultivos de alto valor comercial
Date
2013-04-01
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Para predecir el comportamiento de enfermedades de plantas, mediante la construcción de
modelos matemáticos, se evaluó la severidad de manchas foliares ocasionada por el hongo
Altenaria tenuissima, en plantaciones de arándano alto (cultivar O’Neal) en tres localidades:
San Pedro (S 33o 43’ - W 059o 41’), Concordia (S 31o 24’ - W 058o 02’) y Gualeguaychú (S
33o 01’ - W 058o 31’), durante los ciclos epidémicos primavero-estivo-otoñales de 2008/09 y
2009/10. Los mejores modelos simples de regresión logística de respuesta binaria integraron
a Snc (grado de senescencia foliar) y a DTxnP (días con temperaturas entre 16 y 36°C), con
precisiones de predicción de 93,8% y 78,5% respectivamente. El mejor modelo de respuesta
ordinal integró a la interacción FPr*DTxnP (días con precipitación > 0,2 mm*días con temperaturas entre 16 y 36°C) y a Snc, con una precisión de predicción de 86,2%.
The construction of mathematical models to predict the behavior of plant diseases requires the use of methods for collecting data related to the disease, the host and the environment. The severity of leaf spot, caused primarily by the fungus Altenaria tenuissima, highbush blueberry plantations (cultivar “O’Neal”) was evaluated in three locations: San Pedro (S 33o 43’- W 059o 41’), Concordia (S 31o 24’- W 058o 02’) and Gualeguaychú (S 33o 01’- W 058o 31’), epidemic cycles during spring-summer-autumn 2008/09 and 2009/10. The best simple logistic regression models for binary response integrated into Snc (degree of leaf senescence) and DTxnP (days with temperatures between 16 and 36°C), with prediction accuracies of 93.8% and 78.5% respectively. The best model for ordinal response interaction joined FPr*DTxnP (days with pre- cipitation > 0.2 mm
The construction of mathematical models to predict the behavior of plant diseases requires the use of methods for collecting data related to the disease, the host and the environment. The severity of leaf spot, caused primarily by the fungus Altenaria tenuissima, highbush blueberry plantations (cultivar “O’Neal”) was evaluated in three locations: San Pedro (S 33o 43’- W 059o 41’), Concordia (S 31o 24’- W 058o 02’) and Gualeguaychú (S 33o 01’- W 058o 31’), epidemic cycles during spring-summer-autumn 2008/09 and 2009/10. The best simple logistic regression models for binary response integrated into Snc (degree of leaf senescence) and DTxnP (days with temperatures between 16 and 36°C), with prediction accuracies of 93.8% and 78.5% respectively. The best model for ordinal response interaction joined FPr*DTxnP (days with pre- cipitation > 0.2 mm
Description
Keywords
epidemiología, modelos predictivos, manejo de enfermedades, arándano alto, alternaría tenuissima., epidemiology, prediction models, disease management, highbush blueberry, alternaria tenuissima
Citation
Proyecciones, Vol.11 No. 1
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as openAccess