Learning to detect vegetation using computer vision and lowcost cameras

dc.creatorFelissia, Sergio
dc.creatorRedolfi, Javier
dc.creatorBenardi, Emanuel
dc.creatorAraguás , Roberto Gastón
dc.creatorFelisa, Ana Georgina
dc.date.accessioned2026-02-12T19:38:40Z
dc.date.issued2020
dc.description.abstractA problem of current agriculture is the large amount of agrochemicals used to boost production due to their cost and the environmental pollution they cause. A partial solution to this problem consists in developing selective spraying techniques through the measurement of a green index that allows the selection of the precise amount of pesticide to be applied according to the specific conditions of each part of the field. Some of the problems of the existing systems are the inability to discriminate between types of vegetation and to pinpoint its location, since they only detect general patches of vegetation. In this work, we introduce a system prototype capable of measuring the presence of vegetation in an area using lowcost devices combined with current computer vision techniques. The system allows to generate a mask with the presence of vegetation in a certain area and it is also capable of distinguishing between different materials unlike current methods, which only allow to distinguish between green and non-green areas. The presented method opens the door to future research which can allow distinguishing between crops and weeds to make an even more selective application. The output of the system can be used also to design another type of weeding method that is not based on the application of agrochemicals.
dc.description.affiliationFil: Felissia, Sergio. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina.
dc.description.affiliationFil: Redolfi, Javier. Universidad Tecnológica Nacional. Facultad Regional San Francisco. Grupo de Investigación Sobre Aplicaciones Inteligentes; Argentina.
dc.description.affiliationFil: Bernardi, Emanuel. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina.
dc.description.affiliationFil: Araguás, Roberto Gastón. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina.
dc.description.affiliationFil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
dc.description.peerreviewedPeer Reviewed
dc.formatpdf
dc.identifier.citationIEEE International Conference on Industrial Technology, 2020.
dc.identifier.urihttps://hdl.handle.net/20.500.12272/14496
dc.language.isoen
dc.publisherIEEE
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.holderFelissia, Sergio; Redolfi, Javier; Bernardi, Emanuel; Aragúas, Roberto Gastón; Flesia, Ana Georgina.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.usehttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDetect vegetation
dc.subjectAgriculture
dc.subjectLow cost cameras
dc.titleLearning to detect vegetation using computer vision and lowcost cameras
dc.typeinfo:eu-repo/semantics/article
dc.type.versionpublisherVersion

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Learning to Detect Vegetation Using Computer Vision and Low..pdf
Size:
148.7 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.63 KB
Format:
Item-specific license agreed upon to submission
Description: