Determinación de propiedades mecánicas efectivas de diferentes grados de fundiciones dúctiles mediante micromecánica computacional
Date
2016-11
Journal Title
Journal ISSN
Volume Title
Publisher
UTN- FRC
Abstract
La fundición dúctil (FD) es una aleación de Fe-C-Si, en la cual el carbono se presenta principalmente como
grafito en forma de partículas esféricas embebidas en una matriz metálica que, en condición as-cast, está
constituida por diferentes porcentajes de ferrita y de perlita. Variaciones en la microestructura de la matriz
dan origen a distintos grados o clases de FD, con propiedades mecánicas diferentes [1]. Determinar la
relación entre microestructura y propiedades mecánicas es un tema de continua investigación; en este
contexto, la micromecánica computacional (MC) permite determinar las propiedades efectivas de materiales
con microestructura heterogénea. La MC considera dos escalas de análisis: una escala menor o
microscópica, en la que se representan las características de la microestructura del material bajo estudio, y
una escala mayor o macroscópica en la cual se considera un material homogéneo con comportamiento
mecánico equivalente al del material heterogéneo de la escala menor [2]. La micromecánica requiere de la
identificación de un elemento de volumen representativo (EVR) asociado con determinadas condiciones de
borde. Un EVR es una muestra de tamaño finito del material heterogéneo capaz de caracterizar el
comportamiento macroscópico [2,3]. En este trabajo se propone un modelo micromecánico computacional
en el marco del método de elementos finitos (MEF) para estudiar la respuesta mecánica de diferentes
grados de FD. Se analiza el comportamiento elásto-plástico del material mediante EVR a los cuales se les
imponen condiciones de borde periódicas. El desempeño del modelo propuesto se analiza comparando
resultados experimentales y simulados de FD ferríticas, perlíticas y ferrtíca-perlíticas; para la validación se
cuenta con las respuestas a ensayos mecánicos de tracción y con la caracterización microestructural de las
distintas FD consideradas. Las características microestructurales son datos de entrada para generar los
EVR. Las comparaciones realizadas muestran un buen acuerdo entre los resultados numéricos y los
experimentales.
Ductile iron (DI) is a Fe-C-Si alloy, in which carbon is mainly present as spherical shape graphite nodules embedded in a metal matrix that, in as-cast condition, contains both ferrite and pearlite. Changes in the matrix give rise to several grades or classes of DI, with varying mechanical properties [1]. Determining the relationship between microstructure and mechanical properties is the subject of ongoing research; in this context, the computational micromechanics (CM) allows to derive the effective properties of microscopically heterogeneous materials. The CM considers two scales of analysis: a lower or microscopic scale, in which the characteristics of the microstructure of the material under study are represented, and a greater or macroscopic scale in which a homogeneous material, with mechanical behavior equivalent to those of the heterogeneous material at the smaller level, is considered [2]. Micromechanics requires to identify a representative volume element (RVE) associated with certain boundary conditions. A RVE is a sample of finite size of the heterogeneous material capable of represent its overall behavior [2, 3]. In this paper a computational micromechanical model is proposed in the framework of the finite element method (FEM) to study the mechanical response of several degrees of DI. Using a RVE with periodic boundary conditions, elastic-plastic behavior of DI is investigated. The performance of the proposed model is examined by comparing experimental data and numerical results of ferritic, pearlitic and ferritic-pearlitic DIs; for validation purposes experimental results of mechanical tensile tests and microstructural characterization, for the DIs considered, are accounted. The microstructural features are the input to generate the RVE. Comparisons show good agreement between numerical and experimental results.
Ductile iron (DI) is a Fe-C-Si alloy, in which carbon is mainly present as spherical shape graphite nodules embedded in a metal matrix that, in as-cast condition, contains both ferrite and pearlite. Changes in the matrix give rise to several grades or classes of DI, with varying mechanical properties [1]. Determining the relationship between microstructure and mechanical properties is the subject of ongoing research; in this context, the computational micromechanics (CM) allows to derive the effective properties of microscopically heterogeneous materials. The CM considers two scales of analysis: a lower or microscopic scale, in which the characteristics of the microstructure of the material under study are represented, and a greater or macroscopic scale in which a homogeneous material, with mechanical behavior equivalent to those of the heterogeneous material at the smaller level, is considered [2]. Micromechanics requires to identify a representative volume element (RVE) associated with certain boundary conditions. A RVE is a sample of finite size of the heterogeneous material capable of represent its overall behavior [2, 3]. In this paper a computational micromechanical model is proposed in the framework of the finite element method (FEM) to study the mechanical response of several degrees of DI. Using a RVE with periodic boundary conditions, elastic-plastic behavior of DI is investigated. The performance of the proposed model is examined by comparing experimental data and numerical results of ferritic, pearlitic and ferritic-pearlitic DIs; for validation purposes experimental results of mechanical tensile tests and microstructural characterization, for the DIs considered, are accounted. The microstructural features are the input to generate the RVE. Comparisons show good agreement between numerical and experimental results.
Description
Keywords
fundición dúctil, microestructura, propiedades mecánicas
Citation
Congreso Internacional de Metalúrgica y Materiales - 16º SAM-CONAMET
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess

