Controlled Release of Haloperidol from a novel SWCNT Nano composite coated with ZnO nanocrystals.

dc.creatorAnunziata , Oscar Alfredo
dc.creatorCussa , jorgelina
dc.creatorMartínez , María Laura
dc.creatorMartínez , María Laura
dc.creatorCussa , jorgelina
dc.date.accessioned2025-04-14T19:32:21Z
dc.date.issued2023
dc.description.abstractStarting from the physicochemical knowledge of the host properties of the na noscale systems would be applied to drug dosage [1,2]. We propose NM synthesis strategies that offer the necessary characteristics for these processes. First, we study the physicochemistry of the anchoring sites of the respective hosts (chemical bonds with reversible or irreversible adsorption) or physisorption (straightforward interactions). Then, whether to design carbon based nanomaterials (CNM), or nano engineered materials, containing the respective active sites (deposited or generated nanospecies), capable of interacting with the aforementioned hosts such as: redox sites, proton acceptor sites, electron donor-acceptor sites, to allow HOMO-LUMO chemical interactions that satisfy the needs of the process to be studied. The nanostructures that allow free diffusions and reversible adsorptions, dosage of molecules with applications in nanokinetics, etc., and determination of critical molecular sizes, calculated using experimental methods, and methods such as density functional theory and semiempirical methods, to avoid steric hindrances between molecules and 100 80 40 60 8 12 16 20 Experimental data Weibull Ritger-Peppas Higuchi Drug Released , % mol/w Time (h) 4 20 nanomaterials whether 2D or 3D, designing NMs with large surface area, physical, ther mal and chemical stability, and pore size, and adequate pore size. Advancing in this sense, this work studies the usage of: Haloperidol Release from ZnO nanocrystal Coated SWCNT, with 30nm of wide and 5 um of long, which by the effect of the interaction between the host and drug molecules and by diffusion through the porosity, leads to a substantial contribution to controlled drug release. The reduction in the dose and frequency of administration, possible improvement in the selectivity of the pharmacological activity, and a prolonged therapeutic effect. CNT prepared by sol gel method (using the same technique describe by us, [3]), but at different pH and long range of pristine mesoporous carbons material calcination, to obtain SWCNTs. The posterior deposition of ZnO, was obtained, employing ZnNO3, activated under N2 flow at 500ºC; offering adequate LUMO of Zn (the hybridized MO) for Haloperidol interactions. Haloperidol competitively blocks postsynaptic dopamine (D2) receptors in the meso limbic system of the brain, thereby eliminat ing dopamine neurotransmission and leading to antidelusionary and antihallucinagenic effects. Specifically, the dose of Haloperidol (potent antipsychotic drug), indicates that its release follows the so called "power law" or Weibull model, based on the results we obtained in our laboratory
dc.description.affiliationFil: Anunziata, Oscar Alfredo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación Nanociencia y Nanotecnología; Argentina.
dc.description.affiliationFil: Cussa, Jorgelina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación Nanociencia y Nanotecnología; Argentina.
dc.description.affiliationFil: Martínez, María Laura. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación Nanociencia y Nanotecnología; Argentina.
dc.formatpdf
dc.identifier.citationNanotech France 2023.
dc.identifier.urihttps://hdl.handle.net/20.500.12272/12689
dc.language.isoen
dc.publisherUnivesidsad Tecnológica Nacional.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.holderAnunziata, Oscar Alfredo; Cussa, Jorgelina; Martínez, María Laura.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.usehttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectZnO SWCNT
dc.subjectBiomedical host
dc.subjectAntipsychotic drug
dc.subjectLUMO Zn--Haloperidol interaction
dc.subjectHaloperidol release
dc.subjectWeibull first order kinetic mode
dc.titleControlled Release of Haloperidol from a novel SWCNT Nano composite coated with ZnO nanocrystals.
dc.typeinfo:eu-repo/semantics/article
dc.type.versionacceptedVersion

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2111.- Controlled Release of Haloperidol from a novel SWCNT Nano composite coated with ZnO nanocrystals.pdf
Size:
490.47 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.63 KB
Format:
Item-specific license agreed upon to submission
Description: