Uncertainty propagation of meteorological and emission data in modeling pollutant dispersion in the atmosphere
Date
2014
Journal Title
Journal ISSN
Volume Title
Publisher
Ingenieria e Investigación
Abstract
La variabilidad es la heterogeneidad real dentro de una población, que no puede ser reducida ni eliminada por más o mejores
determinaciones. La incertidumbre representa la ignorancia acerca de un fenómeno pobremente caracterizado, pero que puede
reducirse mediante la recopilación de más datos. El objetivo de este trabajo es estimar la concentración de PM10 provocada por
las emisiones de una fuente puntual ubicada en Malagueño (Córdoba, Argentina), considerando la variabilidad y la incertidumbre
de la meteorología y las emisiones. Para abordar este análisis fue desarrollado un método que utiliza los algoritmos del modelo
Industrial Source Complex de la USEPA junto a la metodología Monte Carlo. Con cien mil iteraciones se obtuvo la distribución de
concentraciones, encontrándose que la incertidumbre en la dirección del viento es la de mayor incidencia sobre las estimaciones.
Variability is true heterogeneity existing within a population that cannot be reduced or eliminated by more or better determinations. Uncertainty represents ignorance about poorly characterized phenomena, but it can be reduced by collecting more data. The aim of this paper was to study the impact of the variability and uncertainty of the main variables, i.e., emissions and meteorology, of the PM10 concentration caused by a point source located at Malagueño (Córdoba, Argentina). To perform this analysis, a scheme was developed using the USEPA Industrial Source Complex model algorithms with a Monte Carlo methodology. Using a simulation with one hundred thousand iterations, the concentration distribution was obtained and showed that the uncertainty in wind direction had the greatest impact on the estimates.
Variability is true heterogeneity existing within a population that cannot be reduced or eliminated by more or better determinations. Uncertainty represents ignorance about poorly characterized phenomena, but it can be reduced by collecting more data. The aim of this paper was to study the impact of the variability and uncertainty of the main variables, i.e., emissions and meteorology, of the PM10 concentration caused by a point source located at Malagueño (Córdoba, Argentina). To perform this analysis, a scheme was developed using the USEPA Industrial Source Complex model algorithms with a Monte Carlo methodology. Using a simulation with one hundred thousand iterations, the concentration distribution was obtained and showed that the uncertainty in wind direction had the greatest impact on the estimates.
Description
Keywords
Incertidumbre, Variabilidad, Monte Carlo, Uncertainty, Variability, PM10
Citation
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess