R versus Python en la selección de umbrales múltiples para imágenes de radares de apertura sintética (SAR)
Date
2020-04-01
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Las imágenes de radares de apertura sintética (imágenes SAR) han sido consideradas por varios
investigadores como la mejor herramienta para monitorear la Tierra. A pesar de las ventajas de
este tipo de radares, las imágenes SAR son difíciles de analizar. El objetivo de seleccionar umbra-
les para una imagen es obtener una nueva imagen simplificada, conservando la información de
forma y la estructura geométrica. En este trabajo comparamos el desempeño de los lenguajes R
y Python para la selección de umbrales múltiples en imágenes SAR reales, en términos de costo
computacional y medidas clásicas para el análisis de calidad de imagen.
Synthetic aperture radar images (SAR images) have been considered as the best tool for Earth mo- nitoring by many researchers. In spite of the advantages of this kind of radars, SAR images are very difficult to analize. The goal of image thresholding is to find a new simplified image that preserves the same shape information and geometric structure. In this work, we compare the performance of the languages R and Python in real SAR image multiple thresholding, in terms of computational cost and classical image quality assessment measures.
Synthetic aperture radar images (SAR images) have been considered as the best tool for Earth mo- nitoring by many researchers. In spite of the advantages of this kind of radars, SAR images are very difficult to analize. The goal of image thresholding is to find a new simplified image that preserves the same shape information and geometric structure. In this work, we compare the performance of the languages R and Python in real SAR image multiple thresholding, in terms of computational cost and classical image quality assessment measures.
Description
Keywords
imágenes sar, umbrales múltiples, segmentación, r - python, nuclear reactions, nuclear reactors, tritons, reverse protons, 48v
Citation
Proyecciones, Vol.18 No. 1
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess