Desarrollo, Producción e Innovación en la Investigación científica
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/2392
Browse
4 results
Search Results
Item LP-SBA-15/Ketorolac Nanocomposite: Development, Characterization, and Mathematical Modeling of Controlled Keto Release.(Univesidsad Tecnológica Nacional, 2023) Cussa, jorgelina; Juárez , Juliana María; Gómez Costa, Marcos Bruno; Anunziata, Oscar AlfredoDrug-controlled release systems can keep the level of drugs in precise doses in the body above the optimal level and with low toxicity. We propose the nanomaterial LP-SBA-15 as an attractive new host for drug delivery systems due to its high biocompatibility, in vivo biodegradability, and low toxicity. LP-SBA-15/Ketorolac was prepared and characterized by XRD, FTIR, UV-Vis DRS, TEM, and texture analysis, determining the adsorption capacity and its release and achieving the required therapeutic efficacy. The host shows the ordered mesoporous nanochannels with a diameter of 11-12 nm, maintaining the structure with the incorporation of Keto. The mechanism of drug release from the LP-SBA-15 host was evaluated. Different mathematical models were used to adjust the experimental data, the Ritger-Peppas model followed by the Weibull model the best ones. The promising results we obtained for the release of the drug thoroughly using the new material, reaching a rapid initial release rate, and maintaining a constant rate afterward, allow us to maintain the concentration of the drug in the therapeutic efficacy range, applying it largely to the treatment of diseases that require a rapid response.Item LP-SBA-15, functionalized with tert-butylamine a novel controlled release system for cyclophosphamide.(Univesidsad Tecnológica Nacional, 2013) Juárez , Juliana María; Cussa, Jorgelina; Gómez costa , Marcos Bruno; Anunziata, Oscar Alfredo; Anunziata, Oscar AlfredoControlled drug administration systems can keep the level of drugs in specific locations in the organism with low toxicity and above the optimal level. We suggest the LP-SBA-15 material as an auspicious new host for drug delivery systems because of its low toxicity high biocompatibility and in vivo biodegradability. LP SBA-15 materials were synthesized and functionalized using 0-15-30% of tert butylamine (TBA) and used as effective drug delivery systems. The anticancer drug Cyclophosphamide (CP) is an alkylating compound which is a phosphoramide derivative and is habitually used in autoimmune diseases. Reactive oxygen species production has been related to the mechanism of CP-induced cell death or tumor cell killing. The activated metabolites of CP are released in both healthy and tumor tissues and destroy the cellular DNA and proteins as well as mitochondrial and lysosomal membranes. CP was loaded into the nanomaterial of the transporters and characterized by XRD, FTIR, TGA, TEM and texture, determining the adsorption capacity and its release. The release of the drug was studied for each material by simulating the physiological conditions and submerging the composite, at 37 °C with constant stirring, in a HCl solution (0.1 M) for the first two hours and in Buffer solution pH = 7 the following hours to simulate the conditions of the organism. Release experiment were conducted to determine the requisite efficacy of treatment. The study was performed by UV-Vis spectrophotometry to evaluate the amount of CP released. The mechanism of drug release from the LP-SBA-15 matrix was evaluated by adjusting the experimental data, being the Ritger-Peppas (figure 1) The promising results we obtained for the controlled release of the drug in a controlled manner using the new material, reaching a quick initial release rate and maintaining a constant rate at high moments, allow us to keep the concentration of the drug in the therapeutic efficacy range, applying it to a great extent to the treatment of diseases that require a rapid response. Lastly, it was suggested that the LP-SBA-15 nanomaterial functionalized with 15% TBA was the most desirable system due to they had adequate amounts of both drug loading and releaseItem Large pore SBA-15 functionalized as drug carrier of Cyclophosphamide.(Univesidsad Tecnológica Nacional, 2023) Juárez , Juliana María; Cussa, Jorgelina; Anunziata, Oscar Alfredo; Gómez Costa, Marcos BrunoControlled drug administration systems can keep the level of drugs in specific locations in the organism with low toxicity and above the optimal level. We suggest the LP-SBA-15 material as an auspicious new host for drug delivery systems because of its low toxicity high biocompatibility and in vivo biodegradability. LP-SBA-15 materials were synthesized and functionalized using 0-15-30% of tert-butylamine (TBA) and used as effective drug delivery systems. The anticancer drug Cyclophosphamide (CP) is an alkylating compound which is a phosphoramide derivative and is habitually used in autoimmune diseases. Reactive oxygen species production has been related to the mechanism of CP-induced cell death or tumor cell killing. The activated metabolites of CP are released in both healthy and tumor tissues and destroy the cellular DNA and proteins as well as mitochondrial and lysosomal membranes. CP was loaded into the nanomaterial of the transporters and characterized by N2 adsorption-desorption, Ultraviolet-visible diffusereflectance spectroscopy (UV-Vis DRS), FTIR, determining the adsorption capacity and its release. The release of the drug was studied for each material by simulating the physiological conditions and submerging the composite, at 37 °C with constant stirring, in a HCl solution (0.1 M) for the first two hours and in Buffer solution pH = 7 the following hours to simulate the conditions of the organism. Release experiments were conducted to determine the requisite efficacy of treatment. The study was performed by UV-Vis spectrophotometry to evaluate the amount of CP released. The mechanism of drug release from the LP-SBA-15 functionalized matrix was evaluated by adjusting the experimental data, being the Ritger-Peppas model, Weibull model and First-Order model, the best models to adjust the experimental data is the, which is confirmed by the R2 coefficient of determination. The promising results we obtained for the controlled release of the drug in a controlled manner using the new material, reaching a quick initial release rate and maintaining a constant rate at high moments, allow us to keep the concentration of the drug in the therapeutic efficacy range, applying itto a great extent to the treatment of diseases that require a rapid response. Lastly, it was suggested thatthe LP SBA-15 nanomaterial functionalized with 15% TBA was the most desirable system due to they had adequate amounts of both drug loading and releaseItem LP-SBA-15/ketorolac nanocomposite: development, characterization, and mathematical modeling of controlled keto release(2022) Cussa, Jorgelina; Juárez, Juliana María; Gómez Costa, Marcos Bruno; Anunziata, Oscar AlfredoDrug-controlled release systems can keep the level of drugs in precise doses in the body above the optimal level and with low toxicity. We propose the nanomaterial LP-SBA-15 as an attractive new host for drug delivery systems due to its high biocompatibility, in vivo biodegradability, and low toxicity. LP-SBA-15/Ketorolac was prepared and characterized by XRD, FTIR, UV-Vis DRS, TEM, and texture analysis, determining the adsorption capacity and its release and achieving the required therapeutic efficacy. The host shows the ordered mesoporous nanochannels with a diameter of 11-12 nm, maintaining the structure with the incorporation of Keto. The mechanism of drug release from the LP-SBA-15 host was evaluated. Different mathematical models were used to adjust the experimental data, the Ritger-Peppas model followed by the Weibull model the best ones. The promising results we obtained for the release of the drug thoroughly using the new material, reaching a rapid initial release rate, and maintaining a constant rate afterward, allow us to maintain the concentration of the drug in the therapeutic efficacy range, applying it largely to the treatment of diseases that require a rapid response.