Desarrollo, Producción e Innovación en la Investigación científica

Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/2392

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Ordered mesoporous SBA-15 host for Ketorolac-Tromethamine loading and release behavior.
    (Univesidsad Tecnológica Nacional, 2017) Cussa , jorgelina; Juárez , Juliana María; Gómez Costa , Marcos Bruno; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; Juárez , Juliana María
    The ordered mesoporous silica SBA-15 has been applied in studies of ketorolac tromethamine adsorption and release. The SBA-15 materials with hexagonal and regular structure were obtained using a triblock copolymer Pluronic P123 as a template and TEOS as a silica source. Ketorolac tromethamine was adsorbed into SBA-15 silica nanochannels using ethanol as solvent. The physicochemical and textural properties of SBA-15 and ketorolac tromethamine/SBA-15 were characterized by X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, Fourier transform infrared spectroscopy and BET surface studies. The composite SBA-15/KETO shows characteristic bands of both, drug materials and the inorganic framework. This indicates that KETO was adsorbed into SBA-15 channel surface without affecting the chemical structure or composition of KETO. Drug release was evaluated by soaking the loaded silica mesoporous material into a solution of HCl (0.1N) at initial time (0 - 2 h) and buffer pH 7 at high times at 37 ºC under continuous stirring. Oral commercial Keto tablets (Dolten®) and Keto solution (Keto power) were study for the contrast. Release studies were performed in order to evaluate the required therapeutic efficacy. SBA-15 provides significant improvement in the controlled release of ketorolac tromethamine and enhance a good analgesia effect.
  • Thumbnail Image
    Item
    Ketorolac-tromethamine contained in SBA-15 host as a drug release system,
    (Univesidsad Tecnológica Nacional, 2017) Cussa , jorgelina; Prados, Antonella; Juárez , Juliana María; Gómez Costa , Marcos Bruno; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; Juárez , Juliana María
    Drug delivery is an emerging field mainly focused on targeting drugs. The goal of this targeted delivery is to transport an amount of drugs to desirable sites (such as tumors and diseased tissues) while minimizing unwanted side effects of the drugs on other tissues[1]. Controlled drug delivery systems can achieve precise spatial and temporal delivery of therapeutic agents to the target site[2]. The ordered mesoporous silica SBA-15 has been applied in studies of ketorolac tromethamine adsorption and release. The SBA-15 materials with hexagonal and regular structure were obtained using a triblock copolymer Pluronic P123 as a template and TEOS as a silica source[3]. Ketorolac tromethamine was adsorbed into SBA-15 silica nanochannels using ethanol as solvent. The physicochemical and textural properties of SBA-15 and ketorolac tromethamine/SBA-15 were characterized by X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, Fourier transform infrared spectroscopy and BET surface studies. Drug release was evaluated by soaking the loaded silica mesoporous material into a solution of HCl (0.1N) at initial time (0 - 2 h) and buffer pH 7 at high times at 37 ºC under continuous stirring. Oral commercial Keto tablets (Dolten®) and Keto solution (Keto power) were study for the contrast. Release studies were performed in order to evaluate the required therapeutic efficacy. In this work, we have shown a promising drug storage material for the effective encapsulation and controlled release of KETO, achieving the required therapeutic efficacy. SBA-15/KETO shows characteristic bands of both, drug materials and the inorganic framework. This indicates that KETO was adsorbed into SBA-15 channel surface without affecting the chemical structure or composition of KETO. The study also demonstrates the storage capacity and release properties of SBA-15 containing KETO. The release of KETO contained in SBA-15 can offer significant improve in controlled drug release and enhance a good analgesia effect.
  • Thumbnail Image
    Item
    Nanostructured SBA-15 host: synthesis, characterization and application in ketorolac-tromethamine release system.
    (Univesidsad Tecnológica Nacional, 2016) Cussa , jorgelina; Juárez , Juliana María; Gómez Costa, Marcos Bruno; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; Juárez , Juliana María
    The ordered mesoporous silica SBA-15 has been applied in studies of ketorolac tromethamine adsorption and release. The SBA-15 materials with hexagonal and regular structure were obtained using a triblock copolymer Pluronic P123 as template and TEOS as a silica source[1]. Drug delivery is an emerging field mainly focused on aiming drugs. The goal of this targeted delivery is to transport an amount of drugs to desirable sites (such as tumors and diseased tissues) while minimizing unwanted side effects of the drugs on other tissues [2]. Controlled drug delivery systems can achieve precise spatial and temporal delivery of therapeutic agents to the target site. Ketorolac tromethamine was adsorbed into SBA-15 silica nanochannels using ethanol as solvent. The physicochemical and textural properties of SBA-15 and ketorolac tromethamine/SBA-15 were characterized by X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, Fourier transform infrared spectroscopy and BET surface studies. Drug release was evaluated by soaking the loaded silica mesoporous material into a solution of HCl (0.1N) at 37 ºC under continuous stirring. Release studies were performed in order to evaluate the required therapeutic efficacy. SBA-15 provides significant improvement in the controlled release of ketorolac tromethamine [3]. In this work, we have shown a promising drug storage material for the effective encapsulation and controlled release of KETO, achieving the required therapeutic efficacy. SBA-15/KETO shows characteristic bands of both, drug materials and the inorganic framework. This indicates that KETO was adsorbed into SBA-15 channel surface without affecting the chemical structure or composition of KETO. The study also demonstrates the storage capacity and release properties of SBA-15 containing KETO. The release of KETO contained in SBA-15 can offer significant improve in controlled drug release and enhance a good analgesia effect.
  • Thumbnail Image
    Item
    LP-SBA-15/Ketorolac Nanocomposite: Development, Characterization, and Mathematical Modeling of Controlled Keto Release.
    (Univesidsad Tecnológica Nacional, 2023) Cussa, jorgelina; Juárez , Juliana María; Gómez Costa, Marcos Bruno; Anunziata, Oscar Alfredo
    Drug-controlled release systems can keep the level of drugs in precise doses in the body above the optimal level and with low toxicity. We propose the nanomaterial LP-SBA-15 as an attractive new host for drug delivery systems due to its high biocompatibility, in vivo biodegradability, and low toxicity. LP-SBA-15/Ketorolac was prepared and characterized by XRD, FTIR, UV-Vis DRS, TEM, and texture analysis, determining the adsorption capacity and its release and achieving the required therapeutic efficacy. The host shows the ordered mesoporous nanochannels with a diameter of 11-12 nm, maintaining the structure with the incorporation of Keto. The mechanism of drug release from the LP-SBA-15 host was evaluated. Different mathematical models were used to adjust the experimental data, the Ritger-Peppas model followed by the Weibull model the best ones. The promising results we obtained for the release of the drug thoroughly using the new material, reaching a rapid initial release rate, and maintaining a constant rate afterward, allow us to maintain the concentration of the drug in the therapeutic efficacy range, applying it largely to the treatment of diseases that require a rapid response.